957 resultados para Aggregation shape
Resumo:
In the framework of the effective mass theory, this paper calculates the electron energy levels of an InAs/GaAs tyre-shape quantum ring (TSQR) by using the plane wave basis. The results show that the electron energy levels are sensitively dependent on the TSQR's section thickness d, and insensitively dependent on TSQR's section inner radius R-1 and TSQR's inner radius R-2. The model and results provide useful information for the design and fabrication of InAs/GaAs TSQRs.
Resumo:
The dependence of the electronic energy levels on the size of quantum dots (QDs) with the shape of spherical lens is studied by using the B-spline technique for the first time. Within the framework of the effective-mass theory, the values of electronic energy levels are obtained as a function of the height, radius and volume of QDs, respectively. When the height or radius of QDs increases, all the electronic energy levels lower, and the separations between the energy levels decrease. For lens-shape QDs, height is the key factor in dominating the energy levels comparing with the effect of radius, especially in dominating the ground-state level. These computational results are compared with that of other theoretical calculation ways. The B-spline technique is proved to be an effective way in calculating the electronic structure in QDs with the shape of spherical lens.
Resumo:
We have grown InAs self-assembled islands on vicinal GaAs( 001) substrates. Atomic force microscopy and photoluminescence studies show that the islands have a clear bimodal size distribution. While most of the small islands whose growth is limited by the width of one multi-atomic step have compact symmetric shapes, a large fraction of the large islands limited by the width of one step plus one terrace have asymmetric shapes which are elongated along the multi-atomic step lines. These results can be attributed to the shape-related energy of the islands at different states of their growth. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
The optical properties of quantum rods in the absence and presence of the magnetic field are studied in the framework of effective-mass envelope function theory. The two-dimensional (2D) and 1D transition dipoles of wurtzite quantum rods are investigated. It is found that the transition dipoles change from 2D to 1D as the aspect ratio of the ellipsoid increases, in agreement with the experimental results. The linear polarization factors of optical transitions of quantum rods with critical aspect ratio are zero at every orientation of the wave propagation. So quantum rods with critical aspect ratio have isotropic transition dipoles. Due to the 2D or 1D transition dipoles, the linear polarization factors of optical transitions of quantum rods change from negative or positive values to zero as the orientation of the wave propagation changes from the x axis of the crystal structure to the z axis, in agreement with the experimental results. Under magnetic field applied along the z axis of the crystal structure, the negative linear polarization factors in the 2D transition dipole case decrease as the magnetic field increases, while under magnetic field applied along the x axis, the negative linear polarization factors increase as the magnetic field increases. The antisymmetric Hamiltonian is very important to these effects of the magnetic field. It is found that quantum rods with a given radius at a given temperature have dark excitons in a range of aspect ratio. The dimensions along the x, y axes of the crystal structure play opposite roles to the dimension along the z axis on the dark exciton phenomenon. Dark excitons become bright under appropriate magnetic field.
Resumo:
Thick GaN films with high quality have been grown on (0001) sapphire substrate in a home-made vertical HVPE reactor. Micron-size hexagonal pits with inverted pyramid shape appear on the film surface, which have six triangular {10-11} facets. These I {10-11} facets show strong luminescence emission and are characteristic of doped n-type materials. Broad red emission is suppressed in {10-11} facets and is only found at the flat region out of the pit, which is related with the decreasing defects on {10-11} facets. Low CL emission intensity is observed at the apex of V-shape pits due to the enhanced nonradiative recombination. Raman spectra show that there are higher carrier concentration and low strain in the pit in comparison to the flat region out of the pit. The strain relaxation may be the main mechanism of the V-shape pits formation on the GaN film surface. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The control of shape and spatial correlation of InAs-InAlAs-InP(001) nanostructure superlattices has been realized by changing the As overpressure during the molecular-beam epitaxy (MBE) growth of InAs layers. InAs quantum wires (QWRs) are obtained under higher As overpressure (1x10(-5) Torr), while elongated InAs quantum dots (QDs) are formed under lower As overpressure (5x10(-6) or 2.5x10(-6) Torr). Correspondingly, spatial correlation changes from vertical anti-correlation in QWR superlattices to vertical correlation in QD superlattices, which is well explained by the different alloy phase separation in InAlAs spacer layers triggered by the InAs nanostrcutures. It was observed that the alloy phase separation in QD superlattices could extend a long distance along the growth direction, indicating the vertical correlation of QD superlattices can be kept in a wide range of spacer layer thickness.
Resumo:
Self-assembled Ge islands were grown on Si (1 0 0) substrate by Si2H6-Ge molecular beam epitaxy. Subjected to a chemical etching, it is found that the size and shape (i.e. ratio of height to base width) of Ge islands change with etching time. In addition, the photoluminescence from the etched Ge islands shifted to the higher energy side compared to that of the as-deposited Ge islands. Our results demonstrated that chemical etching can be a way to change the size and shape of the as-deposited islands as well as their luminescence property. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The size and shape Evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0-ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9-ML deposition on GaAs(1 0 0) substrate. Based on comparisons with the evolution of InAs islands on single layer samples at late growth stage, the bimodal size distribution of InAs islands at 2.5-ML InAs coverage and the formation of larger InAs quantum dots at 2.9-ML deposition have been observed on the second InAs layer. The further cross-sectional transmission electron microscopy measurement indicates the larger InAs QDs: at 2.9-ML deposition on the second layer are free of dislocation. In addition, the interpretations for the size and shape evolution of InAs/GaAs QDs on the second layer will be presented. (C) 2001 Elsevier Science B.V. All lights reserved.
Resumo:
The shape evolution of Ge/Si(001) islands grown by ultrahigh vacuum chemical vapor deposition were investigated by atomic force microscopy at different deposition rates. We find that, at low deposition rates, the evolution of islands follows the conventional pathway by which the islands form the pyramid islands, evolve into dome islands, and dislocate at a superdome shape with increasing coverage. While at a high deposition rate of 3 monolayers per minute, the dome islands evolve towards the pyramids by a reduction of the contact angle. The presence of the atomic intermixing between the Ge islands and Si substrate at high deposition rate is responsible for the reverse evolution. (C) 2001 American Institute of Physics.
Resumo:
We report on the experimental demonstration of a spectrum shaping filter, which is formed by inserting a fiber polarization controller (PC) in to a Sagnac loop. Pedestal free and narrow spectrum with line width at 1.4-1.7 nm is obtained, which is advantageous for further power amplification and effective frequency doubling. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Thermally stimulated redistribution and precipitation of excess arsenic in Ge0.5Si0.5 alloy has been studied by X-ray photoelectron spectroscopy (XPS), cross sectional transmission electron microscopy (XTEM) and X-ray energy disperse spectrometry (EDS). Samples were prepared by the implantation of 6 X 10(6) As+ cm(-2) and 100 keV with subsequent thermal processing at 800 degrees C and 1000 degrees C for 1 h. The XPS depth profiles from the implanted samples before and after the thermal annealing indicate that there is marked redistribution of the elements in heavily arsenic-implanted Ge0.5Si0.5 alloys during the annealing, including: (1) diffusion of As from the implanted region to the surface; (2) aggregation of Ge in the vicinity of the surface. A high density of precipitates was observed near the surface which were by XTEM and EDS identified as an arsenide. It is suggested that most of the implanted As in Ge0.5Si0.5 alloy exists in the form of GeAs.
Resumo:
We proposed a new method to suppress the crystallographic tilt in the lateral epitaxial overgrowth of GaN by using an oxide mask with a newly designed pattern. A rhombus mask with edges oriented in the direction of <10 - 10>(GaN) was used instead of the traditional stripe mask. The morphology evolution during the LEO GaN with the rhombus mask was investigated by SEM, and the crystallographic tilt in the LEO GaN was measured by DC-XRD. It is found that using the new rhombus mask can decrease the crystallographic tilt in the LEO GaN. In addition, this method makes the ELO GaN stripes easy to coalesce. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.