842 resultados para time-and-material contract
Resumo:
Conspicuity limitations make bicycling at night dangerous. This experiment quantified bicyclists’ estimates of the distance at which approaching drivers would first recognize them. Twenty five participants (including 13 bicyclists who rode at least once per week, and 12 who rode once per month or less) cycled in place on a closed-road circuit at night-time and indicated when they were confident that an approaching driver would first recognize that a bicyclist was present. Participants wore black clothing alone or together with a fluorescent bicycling vest, a fluorescent bicycling vest with additional retroreflective tape, or the fluorescent retroreflective vest plus ankle and knee reflectors in a modified ‘biomotion’ configuration. The bicycle had a light mounted on the handlebars which was either static, flashing or off. Participants judged that black clothing made them least visible, retroreflective strips on the legs in addition to a retroreflective vest made them most visible and that adding retroreflective materials to a fluorescent vest provides no conspicuity benefits. Flashing bicycle lights were associated with higher conspicuity than static lights. Additionally, occasional bicyclists judged themselves to be more visible than did frequent bicyclists. Overall, bicyclists overestimated their conspicuity compared to previously collected recognition distances and underestimated the conspicuity benefits of retroreflective markings on their ankles and knees. Participants mistakenly judged that a fluorescent vest that did not include retroreflective material would enhance their night-time conspicuity. These findings suggest that bicyclists have dangerous misconceptions concerning the magnitude of the night-time conspicuity problem and the potential value of conspicuity treatments.
Resumo:
Currently, finite element analyses are usually done by means of commercial software tools. Accuracy of analysis and computational time are two important factors in efficiency of these tools. This paper studies the effective parameters in computational time and accuracy of finite element analyses performed by ANSYS and provides the guidelines for the users of this software whenever they us this software for study on deformation of orthopedic bone plates or study on similar cases. It is not a fundamental scientific study and only shares the findings of the authors about structural analysis by means of ANSYS workbench. It gives an idea to the readers about improving the performance of the software and avoiding the traps. The solutions provided in this paper are not the only possible solutions of the problems and in similar cases there are other solutions which are not given in this paper. The parameters of solution method, material model, geometric model, mesh configuration, number of the analysis steps, program controlled parameters and computer settings are discussed through thoroughly in this paper.
Resumo:
In this study I look at what people want to express when they talk about time in Russian and Finnish, and why they use the means they use. The material consists of expressions of time: 1087 from Russian and 1141 from Finnish. They have been collected from dictionaries, usage guides, corpora, and the Internet. An expression means here an idiomatic set of words in a preset form, a collocation or construction. They are studied as lexical entities, without a context, and analysed and categorized according to various features. The theoretical background for the study includes two completely different approaches. Functional Syntax is used in order to find out what general meanings the speaker wishes to convey when talking about time and how these meanings are expressed in specific languages. Conceptual metaphor theory is used for explaining why the expressions are as they are, i.e. what kind of conceptual metaphors (transfers from one conceptual domain to another) they include. The study has resulted in a grammatically glossed list of time expressions in Russian and Finnish, a list of 56 general meanings involved in these time expressions and an account of the means (constructions) that these languages have for expressing the general meanings defined. It also includes an analysis of conceptual metaphors behind the expressions. The general meanings involved turned out to revolve around expressing duration, point in time, period of time, frequency, sequence, passing of time, suitable time and the right time, life as time, limitedness of time, and some other notions having less obvious semantic relations to the others. Conceptual metaphor analysis of the material has shown that time is conceptualized in Russian and Finnish according to the metaphors Time Is Space (Time Is Container, Time Has Direction, Time Is Cycle, and the Time Line Metaphor), Time Is Resource (and its submapping Time Is Substance), Time Is Actor; and some characteristics are added to these conceptualizations with the help of the secondary metaphors Time Is Nature and Time Is Life. The limits between different conceptual metaphors and the connections these metaphors have with one another are looked at with the help of the theory of conceptual integration (the blending theory) and its schemas. The results of the study show that although Russian and Finnish are typologically different, they are very similar both in the needs of expression their speakers have concerning time, and in the conceptualizations behind expressing time. This study introduces both theoretical and methodological novelties in the nature of material used, in developing empirical methodology for conceptual metaphor studies, in the exactness of defining the limits of different conceptual metaphors, and in seeking unity among the different facets of time. Keywords: time, metaphor, time expression, idiom, conceptual metaphor theory, functional syntax, blending theory
Resumo:
A systematic study was undertaken on the combustion and thermal decomposition of pelletized Ammonium Perchlorate (AP) to investigate the effects of pelletizing pressure and dwell time. At constant pressure, increasing the dwell time results in an increase in the burning rate up to a maximum and thereafter decreases it. The dwell time required for the pellets to have maximum burning rate is a function of pressure. The maximum burning rate is the same for all the pressures used and is also unaffected by increasing, to the range 90-250 μ, the particle size of AP used. In order to explain the occurrence of a maximum in burning rate, pellets were examined for their thermal sensitivities, physical nature and the changes occurring during pelletization with dwell time and pressure. The variations are argued in terms of increasing density, formation of defects such as dislocations leading to an increase in the number of reactive sites, followed by their partial annihilation at longer dwell times due to flow of material during pelletization.
Resumo:
The research reported in this thesis dealt with single crystals of thallium bromide grown for gamma-ray detector applications. The crystals were used to fabricate room temperature gamma-ray detectors. Routinely produced TlBr detectors often are poor quality. Therefore, this study concentrated on developing the manufacturing processes for TlBr detectors and methods of characterisation that can be used for optimisation of TlBr purity and crystal quality. The processes under concern were TlBr raw material purification, crystal growth, annealing and detector fabrication. The study focused on single crystals of TlBr grown from material purified by a hydrothermal recrystallisation method. In addition, hydrothermal conditions for synthesis, recrystallisation, crystal growth and annealing of TlBr crystals were examined. The final manufacturing process presented in this thesis deals with TlBr material purified by the Bridgman method. Then, material is hydrothermally recrystallised in pure water. A travelling molten zone (TMZ) method is used for additional purification of the recrystallised product and then for the final crystal growth. Subsequent processing is similar to that described in the literature. In this thesis, literature on improving quality of TlBr material/crystal and detector performance is reviewed. Aging aspects as well as the influence of different factors (temperature, time, electrode material and so on) on detector stability are considered and examined. The results of the process development are summarised and discussed. This thesis shows the considerable improvement in the charge carrier properties of a detector due to additional purification by hydrothermal recrystallisation. As an example, a thick (4 mm) TlBr detector produced by the process was fabricated and found to operate successfully in gamma-ray detection, confirming the validity of the proposed purification and technological steps. However, for the complete improvement of detector performance, further developments in crystal growth are required. The detector manufacturing process was optimized by characterisation of material and crystals using methods such as X-ray diffraction (XRD), polarisation microscopy, high-resolution inductively coupled plasma mass (HR-ICPM), Fourier transform infrared (FTIR), ultraviolet and visual (UV-Vis) spectroscopy, field emission scanning electron microscope (FESEM) and energy-dispersive X-ray spectroscopy (EDS), current-voltage (I-V) and capacity voltage (CV) characterisation, and photoconductivity, as well direct detector examination.
Resumo:
LiNi0.8Co0.2O2 cathode material for lithium ion batteries is synthesized by reaction under autogenic pressure at elevated temperature (RAPET) method. The simple synthesis procedure is time and energy saving, and thus is promising for commercial application. The structure and stability of the material have been characterized by means of XRD and TG-DTA. The electrochemical properties of the LiNi0.8Co0.2O2 cathode are investigated in 2 M Li2SO4 aqueous electrolyte and they are compared to that in an organic electrolyte. A battery cell consisting of LiNi0.8Co0.2O2 as cathode in 2 M Li2SO4 solution is constructed in combination with LiTi2 (PO4)(3) as anode. The cell retained almost constant discharge capacity over hundred cycles. The electrochemical impedance spectral ( EIS) studies in aqueous and nonaqueous electrolytes revealed that the mechanism of lithium ion intercalation and deintercalation processes in LiNi0.8Co0.2O2 electrode follow almost similar mechanism in both aqueous and nonaqueous electrolytes. The chemical diffusion coefficient was calculated from slow scan rate cyclic voltammetry and EIS. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.075205jes] All rights reserved.
Resumo:
Due to the keen interest in improving the high-speed and high-temperature performance of 1.3-μm wavelength lasers, we compare, for the first time, the material gain of three different competing active layer materials, namely InGaAsP-InGaAsP, AlGaInAs-AlGaInAs, and InGaAsN-GaAs. We present a theoretical study of the gain of each quantum-well material system and present the factors that influence the material gain performance of each system. We find that AIGaInAs and InGaAsN active layer materials have substantially better material gain performance than the commonly used InGaAsP, both at room temperature and at high temperature.
Resumo:
Viscoelasticity and poroelasticity commonly coexist as time-dependent behaviors in polymer gels. Engineering applications often require knowledge of both behaviors separated; however, few methods exist to decouple viscoelastic and poroelastic properties of gels. We propose a method capable of separating viscoelasticity and poroelasticity of gels in various mechanical tests. The viscoelastic characteristic time and the poroelastic diffusivity of a gel define an intrinsic material length scale of the gel. The experimental setup gives a sample length scale, over which the solvent migrates in the gel. By setting the sample length to be much larger or smaller than the material length, the viscoelasticity and poroelasticity of the gel will dominate at different time scales in a test. Therefore, the viscoelastic and poroelastic properties of the gel can be probed separately at different time scales of the test. We further validate the method by finite-element models and stress-relaxation experiments. © 2014 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
Resumo:
The existence of loose particles left inside the sealed electronic devices is one of the main factors affecting the reliability of the whole system. It is important to identify the particle material for analyzing their source. The conventional material identification algorithms mainly rely on time, frequency and wavelet domain features. However, these features are usually overlapped and redundant, resulting in unsatisfactory material identification accuracy. The main objective of this paper is to improve the accuracy of material identification. First, the principal component analysis (PCA) is employed to reselect the nine features extracted from time and frequency domains, leading to six less correlated principal components. And then the reselected principal components are used for material identification using a support vector machine (SVM). Finally, the experimental results show that this new method can effectively distinguish the type of materials including wire, aluminum and tin particles.
Resumo:
Abstract The material flow in friction stir spot welding of aluminium to both aluminium and steel has been investigated, using pinless tools in a lap joint geometry. The flow behaviour was revealed experimentally using dissimilar Al alloys of similar strength. The effect on the material flow of tool surface features, welding conditions (rotation speed, plunge depth, dwell time), and the surface state of the steel sheet (un-coated or galvanized) have been systematically studied. A novel kinematic flow model is presented, which successfully predicts the observed layering of the dissimilar Al alloys under a range of conditions. The model and the experimental observations provide a consistent interpretation of the stick-slip conditions at the tool-workpiece interface, addressing an elusive and long-standing issue in the modelling of heat generation in friction stir processing.
Resumo:
This thesis explores the representation of Swinging London in three examples of 1960s British cinema: Blowup (Michelangelo Antonioni, 1966), Smashing Time (Desmond Davis, 1967) and Performance (Donald Cammell and Nicolas Roeg, 1970). It suggests that the films chronologically signify the evolution, commodification and dissolution of the Swinging London era. The thesis explores how the concept of Swinging London is both critiqued and perpetuated in each film through the use of visual tropes: the reconstruction of London as a cinematic space; the Pop photographer; the dolly; representations of music performance and fashion; the appropriation of signs and symbols associated with the visual culture of Swinging London. Using fashion, music performance, consumerism and cultural symbolism as visual narratives, each film also explores the construction of youth identity through the representation of manufactured and mediated images. Ultimately, these films reinforce Swinging London as a visual economy that circulates media images as commodities within a system of exchange. With this in view, the signs and symbols that comprise the visual culture of Swinging London are as central and significant to the cultural era as their material reality. While they attempt to destabilize prevailing representations of the era through the reproduction and exchange of such symbols, Blowup, Smashing Time, and Performance nevertheless contribute to the nostalgia for Swinging London in larger cultural memory.
Resumo:
Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible. La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique). Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique. L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz.
Resumo:
The thesis mainly focuses on material characterization in different environments: freely available samples taken in planar fonn, biological samples available in small quantities and buried objects.Free space method, finds many applications in the fields of industry, medicine and communication. As it is a non-contact method, it can be employed for monitoring the electrical properties of materials moving through a conveyor belt in real time. Also, measurement on such systems at high temperature is possible. NID theory can be applied to the characterization of thin films. Dielectric properties of thin films deposited on any dielectric substrate can be determined. ln chemical industry, the stages of a chemical reaction can be monitored online. Online monitoring will be more efficient as it saves time and avoids risk of sample collection.Dielectric contrast is one of the main factors, which decides the detectability of a system. lt could be noted that the two dielectric objects of same dielectric constant 3.2 (s, of plastic mine) placed in a medium of dielectric constant 2.56 (er of sand) could even be detected employing the time domain analysis of the reflected signal. This type of detection finds strategic importance as it provides solution to the problem of clearance of non-metallic mines. The demining of these mines using the conventional techniques had been proved futile. The studies on the detection of voids and leakage in pipes find many applications.The determined electrical properties of tissues can be used for numerical modeling of cells, microwave imaging, SAR test etc. All these techniques need the accurate determination of dielectric constant. ln the modem world, the use of cellular and other wireless communication systems is booming up. At the same time people are concemed about the hazardous effects of microwaves on living cells. The effect is usually studied on human phantom models. The construction of the models requires the knowledge of the dielectric parameters of the various body tissues. lt is in this context that the present study gains significance. The case study on biological samples shows that the properties of normal and infected body tissues are different. Even though the change in the dielectric properties of infected samples from that of normal one may not be a clear evidence of an ailment, it is an indication of some disorder.ln medical field, the free space method may be adapted for imaging the biological samples. This method can also be used in wireless technology. Evaluation of electrical properties and attenuation of obstacles in the path of RF waves can be done using free waves. An intelligent system for controlling the power output or frequency depending on the feed back values of the attenuation may be developed.The simulation employed in GPR can be extended for the exploration of the effects due to the factors such as the different proportion of water content in the soil, the level and roughness of the soil etc on the reflected signal. This may find applications in geological explorations. ln the detection of mines, a state-of-the art technique for scanning and imaging an active mine field can be developed using GPR. The probing antenna can be attached to a robotic arm capable of three degrees of rotation and the whole detecting system can be housed in a military vehicle. In industry, a system based on the GPR principle can be developed for monitoring liquid or gas through a pipe, as pipe with and without the sample gives different reflection responses. lt may also be implemented for the online monitoring of different stages of extraction and purification of crude petroleum in a plant.Since biological samples show fluctuation in the dielectric nature with time and other physiological conditions, more investigation in this direction should be done. The infected cells at various stages of advancement and the normal cells should be analysed. The results from these comparative studies can be utilized for the detection of the onset of such diseases. Studying the properties of infected tissues at different stages, the threshold of detectability of infected cells can be determined.
Resumo:
Introduction: An experimental mineral trioxide aggregate sealer (MTAS) has been developed for use as a root canal sealer. The aim of this study was to evaluate the setting time, pH, and calcium ion release of MTAS compared with white Portland cement (CPB-40; Votorantin Cimentos, Camargo Correa SA, Pedro Leopoldo, MG, Brazil), white MTA Angelus (MTA; Angelus, Londrina, PR, Brazil), and AH Plus (Dentsply DeTrey, Konstanz, Germany). Methods: For the evaluation of setting time, each material was analyzed using Gilmore-type needles. Polyethylene tubes with the materials were immersed in distilled water for the measurement of pH (digital pH meter) and calcium release (atomic absorption spectrophotometry). The evaluations were performed at 3, 6, 12, 24, and 48 hours and 7, 14, and 28 days. Data were analyzed by analysis of variance and the Tukey test at 5% significance level. Results: MTAS showed higher calcium release at all experimental periods, a greater increase in pH up to 48 hours and the longest setting time. Conclusions: MTAS presented favorable properties for its indication as a root canal sealer. (J Endod 2011;37:844-846)
Resumo:
The aim of this study was to evaluate the compressive strength and setting time of MTA and Portland cement (PC) associated with bismuth oxide (BO), zirconium oxide (ZO), calcium tungstate (CT), and strontium carbonate (SC). Methods. For the compressive strength test, specimens were evaluated in an EMIC DL 2000 apparatus at 0.5 mm/min speed. For evaluation of setting time, each material was analyzed using Gilmore-type needles. The statistical analysis was performed with ANOVA and the Tukey tests, at 5% significance. Results. After 24 hours, the highest values were found for PC and PC + ZO. At 21 days, PC + BO showed the lowest compressive strength among all the groups. The initial setting time was greater for PC. The final setting time was greater for PC and PC + CT, and MTA had the lowest among the evaluated materials (< 0.05). Conclusion. The results showed that all radiopacifying agents tested may potentially be used in association with PC to replace BO.