971 resultados para second harmonic
Resumo:
We extend current research in the area of 'sensorless' control of induction motors by presenting two observers based on first- and second-order sliding mode control theories for the simultaneous estimation of flux and speed. We base the observers on the stator-flux model of the motor instead of the usual rotor-flux model mainly because of the uncertain rotor resistance that plays a significant role in the latter. By designing the observers as if they are sliding mode controllers, we lend the properties of parameter insensitive closed-loop dynamics and finite time convergence to the stator flux and speed estimation schemes. We also present simulation and experimental results to validate the operation of the observers.
Resumo:
We propose a novel second order cone programming formulation for designing robust classifiers which can handle uncertainty in observations. Similar formulations are also derived for designing regression functions which are robust to uncertainties in the regression setting. The proposed formulations are independent of the underlying distribution, requiring only the existence of second order moments. These formulations are then specialized to the case of missing values in observations for both classification and regression problems. Experiments show that the proposed formulations outperform imputation.
Resumo:
We report the Cl-*(P-2(1/2)) production dynamics in the near-UV dissociation of three isomers (cis-, gem-, and trans-) of dichloroethylene using the conventional resonance enhanced multiphoton ionization technique. Substantial amounts of Cl-* are produced in the wavelength range 222-304 nm. The Cl-* quantum yield (phi(*)) i maximum at 304 nm for all the isomers and phi(*)(cis) is markedly higher than phi(*)(gem) and phi(*)(trans) except at 222 nm. Existence of both direct and indirect dissociation pathways at these wavelengths complicates the Cl* production dynamics. The higher value of phi(*)(cis) originates from a large contribution from direct dissociation via the (n, sigma(*)) state.
Resumo:
We study the energy current in a model of heat conduction, first considered in detail by Casher and Lebowitz. The model consists of a one-dimensional disordered harmonic chain of n i.i.d. random masses, connected to their nearest neighbors via identical springs, and coupled at the boundaries to Langevin heat baths, with respective temperatures T_1 and T_n. Let EJ_n be the steady-state energy current across the chain, averaged over the masses. We prove that EJ_n \sim (T_1 - T_n)n^{-3/2} in the limit n \to \infty, as has been conjectured by various authors over the time. The proof relies on a new explicit representation for the elements of the product of associated transfer matrices.
Resumo:
Semi-similar solutions of the unsteady compressible laminar boundary layer flow over two-dimensional and axisymmetric bodies at the stagnation point with mass transfer are studied for all the second-order boundary layer effects when the free stream velocity varies arbitrarily with time. The set of partial differential equations governing the unsteady compressible second-order boundary layers representing all the effects are derived for the first time. These partial differential equations are solved numerically using an implicit finite-difference scheme. The results are obtained for two particular unsteady free stream velocity distributions: (a) an accelerating stream and (b) a fluctuating stream. It is observed that the total skin friction and heat transfer are strongly affected by the surface mass transfer and wall temperature. However, their variation with time is significant only for large times. The second-order boundary layer effects are found to be more pronounced in the case of no mass transfer or injection as compared to that for suction. Résumé Des solutions semi-similaires d'écoulement variable compressible de couche limite sur des corps bi-dimensionnels thermique, sont étudiées pour tous les effets de couche limite du second ordre, lorsque la vitesse de l'écoulement libre varie arbitrairement avec le temps. Le systéme d'équations aux dérivées partielles représentant tous les effets est écrit pour la premiére fois. On le résout numériquement á l'aide d'un schéma implicite aux différences finies. Les résultats sont obtenus pour deux cas de vitesse variable d'écoulement libre: (a) un écoulement accéléré et (b) un écoulement fluctuant. On observe que le frottement pariétal total et le transfert de chaleur sont fortement affectés par le transfert de masse et la température pariétaux. Néanmoins, leur variation avec le temps est sensible seulement pour des grandes durées. Les effets sont trouvés plus prononcés dans le cas de l'absence du transfert de masse ou de l'injection par rapport au cas de l'aspiration.
Resumo:
All the second-order boundary-layer effects on the unsteady laminar incompressible flow at the stagnation-point of a three-dimensional body for both nodal and saddle point regions have been studied. It has been assumed that the free-stream velocity, wall temperature and mass transfer vary arbitrarily with time. The effect of the Prandtl number has been taken into account. The partial differential equations governing the flow have been derived for the first time and then solved numerically unsteady free-stream velocity distributions, the nature of the using an implicit finite-difference scheme. It is found that the stagnation point and the mass transfer strongly affect the skin friction and heat transfer whereas the effects of the Prandtl number and the variation of the wall temperature with time are only on the heat transfer. The skin friction due to the combined effects of first- and second-order boundary layers is less than the skin friction due to, the first-order boundary layers whereas the heat transfer has the opposite behaviour. Suction increases the skin friction and heat transfer but injection does the opposite
Resumo:
Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.
Resumo:
This thesis is concerned with the area of vector-valued Harmonic Analysis, where the central theme is to determine how results from classical Harmonic Analysis generalize to functions with values in an infinite dimensional Banach space. The work consists of three articles and an introduction. The first article studies the Rademacher maximal function that was originally defined by T. Hytönen, A. McIntosh and P. Portal in 2008 in order to prove a vector-valued version of Carleson's embedding theorem. The boundedness of the corresponding maximal operator on Lebesgue-(Bochner) -spaces defines the RMF-property of the range space. It is shown that the RMF-property is equivalent to a weak type inequality, which does not depend for instance on the integrability exponent, hence providing more flexibility for the RMF-property. The second article, which is written in collaboration with T. Hytönen, studies a vector-valued Carleson's embedding theorem with respect to filtrations. An earlier proof of the dyadic version assumed that the range space satisfies a certain geometric type condition, which this article shows to be also necessary. The third article deals with a vector-valued generalizations of tent spaces, originally defined by R. R. Coifman, Y. Meyer and E. M. Stein in the 80's, and concerns especially the ones related to square functions. A natural assumption on the range space is then the UMD-property. The main result is an atomic decomposition for tent spaces with integrability exponent one. In order to suit the stochastic integrals appearing in the vector-valued formulation, the proof is based on a geometric lemma for cones and differs essentially from the classical proof. Vector-valued tent spaces have also found applications in functional calculi for bisectorial operators. In the introduction these three themes come together when studying paraproduct operators for vector-valued functions. The Rademacher maximal function and Carleson's embedding theorem were applied already by Hytönen, McIntosh and Portal in order to prove boundedness for the dyadic paraproduct operator on Lebesgue-Bochner -spaces assuming that the range space satisfies both UMD- and RMF-properties. Whether UMD implies RMF is thus an interesting question. Tent spaces, on the other hand, provide a method to study continuous time paraproduct operators, although the RMF-property is not yet understood in the framework of tent spaces.
Resumo:
We show how, for large classes of systems with purely second-class constraints, further information can be obtained about the constraint algebra. In particular, a subset consisting of half the full set of constraints is shown to have vanishing mutual brackets. Some other constraint brackets are also shown to be zero. The class of systems for which our results hold includes examples from non-relativistic particle mechanics as well as relativistic field theory. The results are derived at the classical level for Poisson brackets, but in the absence of commutator anomalies the same results will hold for the commutators of the constraint operators in the corresponding quantised theories.
Resumo:
Given a classical dynamical theory with second-class constraints, it is sometimes possible to construct another theory with first-class constraints, i.e., a gauge-invariant one, which is physically equivalent to the first theory. We identify some conditions under which this may be done, explaining the general principles and working out several examples. Field theoretic applications include the chiral Schwinger model and the non-linear sigma model. An interesting connection with the work of Faddeev and Shatashvili is pointed out.
Resumo:
We study relative concentration fluctuations in two component lamellar smectic liquid crystals consisting of surfactant layers of width w separated by a background fluid and show that these fluctuations are dominated by crumpling fluctuations of the surfactant layers when (w/l)2
Resumo:
Exact travelling wave solutions for hydromagnetic waves in an exponentially stratified incompressible medium are obtained. With the help of two integrals it becomes possible to reduce the system of seven nonlinear PDE's to a second order nonlinear ODE which describes an one dimensional harmonic oscillator with a nonlinear friction term. This equation is studied in detail in the phase plane. The travelling waves are periodic only when they propagate either horizontally or vertically. The reduced second order nonlinear differential equation describing the travelling waves in inhomogeneous conducting media has rather ubiquitous nature in that it also appears in other geophysical systems such as internal waves, Rossby waves and topographic Rossby waves in the ocean.
Resumo:
We consider a chain composed of $N$ coupled harmonic oscillators in contact with heat baths at temperature $T_\ell$ and $T_r$ at sites 1 and $N$ respectively. The oscillators are also subjected to non-momentum conserving bulk stochastic noises. These make the heat conductivity satisfy Fourier's law. Here we describe some new results about the hydrodynamical equations for typical macroscopic energy and displacement profiles, as well as their fluctuations and large deviations, in two simple models of this type.
Resumo:
Extensive molecular dynamics simulations have been carried out to calculate the orientational correlation functions Cl(t), G(t) = [4n/(21 + l)]Ci=-l (Y*lm(sZ(0)) Ylm(Q(t))) (where Y,,(Q) are the spherical harmonics) of point dipoles in a cubic lattice. The decay of Cl(t) is found to be strikingly different from higher l-correlation functions-the latter do not exhibit diffusive dynamics even in the long time. Both the cumulant expansion expression of Lynden-Bell and the conventional memory function equation provide very good description of the Cl(t) in the short time but fail to reproduce the observed slow, long time decay of c1 (t) .