849 resultados para optical tweezers technique
Resumo:
Neodymium doped yttrium aluminoborate and yttrium calcium borate glasses were prepared by the conventional melting-quenching technique with neodymium concentration varying from 0.10 to 1.0 mol%. The obtained glasses present a wide transparency in the UV-visible region (till 240 nm). The thermoluminescent (TL) emission of beta-irradiated samples was measured, showing a broad peak at similar to 240 degrees C with intensities related to the Nd(3+) content, for both glasses. Calcium borate glass samples are about one order of magnitude less luminescent than the aluminoborate glasses. Probably the presence of Ca(2+), instead of Al(3+) and Y(3+) in the matrix, inhibits the production of the intrinsic hole centers. connected to boron and oxygen, known in the literature to act as luminescent centers in TL emission of borate glasses. We suggest that Nd(3+) ions act as electron trapping centers in both glass matrices, as they modify the temperature of emission and the light intensity. Also, the Nd:YAIB glass can be used as a dosimeter in various applications, including radiotherapy. but the sensitivity of this material to neutron should be checked. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Erbium-doped single crystal fibers, with low phonon energy and fairly high absorption and emission cross sections are interesting laser active media, for compact, near-infrared and/or upconversion lasers. In this work, high optical quality Er3+-doped CaNb2O6 and CaTa2O6 single crystal fibers were successfully grown by the versatile laser-heated pedestal growth technique, and characterized from the structural and spectroscopic points of view. The results indicate that these crystal fiber compositions, which had not been explored so far, offer potential applications, not only as laser active media, but also in other optical devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The fabrication of controlled molecular architectures is essential for organic devices, as is the case of emission of polarized light for the information industry. In this study, we show that optimized conditions can be established to allow layer-by-layer (LbL) films of poly(p-phenylene vinylene) (PPV)+dodecylbenzenesulfonate (DBS) to be obtained with anisotropic properties. Films with five layers and converted at 110 degrees C had a dichroic ratio delta = 2.3 and order parameter r = 34%, as indicated in optical spectroscopy and emission ellipsometry data. This anisotropy was decreased with the number of layers deposited, with delta = 1.0 for a 75-layer LbL PPV + DBS film. The analysis with atomic force microscopy showed the formation of polymer clusters in a random growth process with the normalized height distribution being represented by a Gaussian function. In spite of this randomness in film growth, the self-covariance function pointed to a correlation between clusters, especially for thick films. In summary, the LbL method may be exploited to obtain both anisotropic films with polarized emission and regular, nanostructured surfaces. (c) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 206-213, 2011
Resumo:
High energy band gap hosts doped with lanthanide ions are suitable for optical devices applications To study the potential of Ta(2)O(5) as a host compound pure and Eu(2)O(3)-doped Ta(2)O(5) crystal fibers were grown by the laser-heated pedestal growth technique in diameters ranging from 250 to 2600 pm and in lengths of up to 50 mm The axial temperature gradient at the solid/liquid interface of pure Ta(2)O(5) fibers revealed a critical diameter of 2200 gm above which the fiber cracks X-ray diffraction measurements of the pure Ta(2)O(5) single crystals showed a monoclinic symmetry and a growth direction of [1 (1) over bar 0] An analysis of the pulling rate as a function of the fiber diameter for Eu(2)O(3)-doped Ta(2)O(5) fibers indicated a well defined region in which constitutional supercooling is absent Photoluminescence measurements of pure Ta(2)O(5) crystals using excitation above the band gap (3 8 eV) were dominated by a broad unstructured green band that peaked at 500 nm Three Eu(3+)-related optical centers were identified in the doped samples with nominal concentrations exceeding 1 mol% Two of these centers were consistent with the ion in the monoclinic phase with different oxygen coordinations The third one was visible in the presence of the triclinic phase (C) 2010 Elsevier B V All rights reserved
Resumo:
CaNb(2)O(6) single crystal fibers were grown by the laser-heated pedestal growth technique, directly from the starting reagents. Optically transparent fibers were obtained in the form of rods with elliptical cross-section, free from cracks, impurities, and secondary phases, with an average diameter of 0.4 mm and about 20 mm of length. The fibers grew within the orthorhombic Pbcn columbite structure, with the growth axis nearly parallel to the crystallographic a-direction. The parameters b and c were parallel to the shorter and larger ellipsis axes. A special setup using a microscope was developed to obtain the far-infrared reflectivity spectra of these micrometer-sized fibers, allowing the identification and assignment of 34 of the 38 polar phonons foreseen for the material. From these phonons, the intrinsic dielectric constant ( of 185 THz) could be estimated, showing the potential of the material for applications in microwave circuitry. These results, along with previous polarized Raman data (Cryst. Growth Des. 2010, 10, 1569), allow us to present a comprehensive set of optical phonon modes and to discuss the potential use of designed CaNb(2)O(6) microcrystals in compact optical devices.
Resumo:
The present work reports on the thermo-optical properties of photorefractive sillenite Bi(12)SiO(20) (BSO) crystals obtained by applying the Thermal Lens Spectrometry technique (TLS). This crystals presents one high photorefractive sensitivity in the region blue-green spectra, since the measurements were carried out at two pump beam wavelengths (514.5 nm and 750 nm) to study of the light-induced effects in this material (thermal and/or photorefractive). We determine thermo-optical parameters like thermal diffusivity (D), thermal conductivity (K) and temperature coefficient of the optical path length change (ds/dT) in sillenite crystals. These aspects, for what we know, not was studied in details up to now using the lens spectrometry technique and are very important against of the promising potentiality of applications these crystals in non linear optics, real time holography and optical processing data.
Resumo:
Ce(0.8)SM(0.2)O(1.9) and CeO(2) nanomaterials were prepared by a solution technique to produce an ultrafine particulate material with high sinterability. In this work, the structural characteristics, the photoluminescent behavior and the ionic conductivity of the synthesized materials are focused. The thermally decomposed material consists of less than 10 nm in diameter nanoparticles. The Raman spectrum of pure CeO(2) consists of a single triple degenerate F(2g) model characteristic of the fluorite-like structure. The full width at half maximum of this band decreases linearly with increasing calcination temperature. The photoluminescence spectra show a broadened emission band assigned to the ligand-to-metal charge-transfer states O -> Ce(4+). The emission spectra of the Ce(0.8)Sm(0.2)O(1.9) specimens present narrow bands arising from the 4G(5/2) -> (6)H(J) transitions (J = 5/2, 7/2, 9/2 and 11/2) of Sm(3+) ion due to the efficient energy transfer from the O -> Ce(4+) transitions to the emitter 4G(5/2) level. The ionic conductivity of sintered specimens shows a significant dependence on density. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Lead iodide thin films were fabricated using the spray pyrolysis technique. Milli-Q water and N.N-dimethylformamide were used as solvents under varying deposition conditions. Films as thick as 60 mu m were obtained. The optical and structural properties of the samples were investigated using Photoluminescence, Raman scattering, X-ray diffraction, and Scanning electron microscopy. In addition, the study included also the electronic properties which were investigated by measuring the dark conductivity as a function of temperature. The deposition technique seems to be promising for the development of thick films to be used in medical imaging.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Two-colour photocurrent detection technique for coherent control of a single InGaAs/GaAs quantum dot
Resumo:
We present a two-colour photocurrent detection method for coherent control of a single InGaAs/GaAs self-assembled quantum dot. A pulse shaping technique provides a high degree of control over picosecond optical pulses. Rabi rotations on the exciton to biexciton transition are presented, and fine structure beating is detected via time-resolved measurements. (c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
This paper describes the effect of nitrogen Plasma Immersion Ion Implantation (PIII) on chemical structure, refraction index and surface hardness of plasma-polymerized hexamethyldisilazane (PPHMDSN) thin films. Firstly, polymeric films were deposited at 13.56 MHz radiofrequency (RF) Plasma Enhanced Chemical Vapour Deposition (PECVD) and then, were treated by nitrogen PIII from 15 to 60 min. Fourier Transformed Infrared (FTIR) spectroscopy was employed to analyse the molecular structure of the samples, and it revealed that vibrations modes at 3350 cm(-1), 2960 cm(-1), 1650 cm(-1), 1250 cm(-1) and 1050 cm(-1) were altered by nitrogen PIII. Visible-ultraviolet (vis-UV) spectroscopy was used to evaluate film refractive index and the results showed a slight increase from 1.6 to 1.8 following the implantation time. Nanoindentation revealed a surface hardness rise from 0.5 to 2.3 GPa as PIII treatment time increased. These results indicate nitrogen PIII is very promising in improving optical and mechanical properties of PPHMDSN films.
Resumo:
An interferometric technique was used to determine the temperature coefficient of the optical path length (dS/dT) as a function of the temperature in several optical glasses. The temperature range was between 25degreesC and 180degreesC. The studied samples included undoped and doped oxide glasses, such as low silica calcium aluminosilicate, phosphates, borates and also chalcogenides. The oxide glasses had dS/dT between 10 X 10(-6) K-1 and 20x10(-6) K-1, while for the chalcogenides, these were around 70 x 10(-6)K(-1). The results showed that dS/dTs increased with the temperature in all samples. For samples doped with Nd the dS/dT values were found to be independent of concentration. on the other hand, for the phosphate glass doped with Cr, dS/dT increased about 5% when compared with the Nd doped one. In conclusion, the used interferometric method, which is a considerably simpler and a lower cost technique, and is a useful tool to measure dS/dT in semi-transparent glasses as a function of the composition and temperature. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)