904 resultados para modeling of arrival processes
Resumo:
Modeling studies are preformed to investigate the plasma and heat transfer characteristics of a low power argon arcjet thruster. Computed temperature, velocity, static pressure, and Mach number distribution in arcjet thruster under typical operating condition are presented in this paper. It shows that the performance data from numerical modeling results are basically consistent with the experimental measured values.
Resumo:
A phenol-degrading. microorganism, Alcaligenes faecalis, was used to study the substrate interactions during cell growth on phenol and m-cresol dual substrates. Both phenol and m-cresol could be utilized by the bacteria as,the sole carbon and energy sources. When cells grew on the mixture of phenol and m-cresol, strong substrate interactions were observed. m-Cresol inhibited the degradation of phenol, on the other hand, phenol also inhibited the utilization of m-cresol, the overall cell growth rate was the co-action of phenol and m-cresol. In addition, the cell growth and substrate degradation kinetics of phenol, m-cresol as single and mixed substrates for A. faecalis in batch cultures were also investigated over a wide range of initial phenol concentrations (10-1400 mg L-1) and initial m-cresol concentrations (5-200 mg L-1). The single-substrate kinetics was described well using the Haldane-type kinetic models, with model constants of it mu(m1) = 0.15 h(-1), K-S1 = 2.22 mg L-1 and K-i1 = 245.37 mg L-1 for cell growth on phenol and mu(m2) = 0.0782 h(-1), K-S2 = 1.30 mg L-1 and K-i2 = 71.77 mgL(-1), K-i2' = 5480 (mg L-1)(2) for cell growth on m-cresol. Proposed cell growth kinetic model was used to characterize the substrates interactions in the dual substrates system, the obtained parameters representing interactions between phenol and m-cresol were, K = 1.8 x 10(-6), M = 5.5 x 10(-5), Q = 6.7 x 10(-4). The results received in the experiments demonstrated that these models adequately described the dynamic behaviors of phenol and m-cresol as single and mixed substrates by the strain of A. faecalis.
Resumo:
University of Paderborn; Fraunhofer Inst. Exp. Softw. Eng. (IESE); Chinese Academy of Science (ISCAS)
Resumo:
National Science Fund for Distinguished Young Scholars of China [40225004]; National Natural Science Foundation of China [40471048]
Resumo:
Funding and support for this project was provided by NSFC (Grant No. 40771015), and Key International Science and Technology Cooperation Projects (Grant No. 22007DFC20180). The authors also gratefully acknowledge the support of Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-year Plan Period (Grant No. 2006BAD01B06-02). The authors thank the CDCs of Daqing, Beijing, Tianjin, Zhengzhou, Changsha and Shenzhen cities for field and laboratory technical support.
Resumo:
Using meteorological data and RS dynamic land-use observation data set, the potential land productivity that is limited by solar radiation and temperature is estimated and the impacts of recent LUCC processes on it are analyzed in this paper. The results show that the influence of LUCC processes on potential land productivity change has extensive and unbalanced characteristics. It generally reduces the productivity in South China and increases it in North China, and the overall effect is increasing the total productivity by 26.22 million tons. The farmland reclamation and original farmlands losses are the primary causes that led potential land productivity to change. The reclamation mostly distributed in arable-pasture and arable-forest transitional zones and oasises in northwestern China has made total productivity increase by 83.35 million tons, accounting for 3.50% of the overall output. The losses of original farmlands driven by built-up areas invading and occupying arable land are mostly distributed in the regions which have rapid economic development, e.g. Huang-Huai-Hai plain, Yangtze River delta, Zhujiang delta, central part of Gansu, southeast coastal region, southeast of Sichuan Basin and Urumqi-Shihezi. It has led the total productivity to decrease 57.13 million tons, which is 2.40% of the overall output.
Resumo:
A facile magnetic control system was designed in bioelectrocatalytic process based on functionalized iron oxide particles. The iron oxide particles were modified with glucose oxidase, and ferrocene dicarboxylic acid was used as electron transfer mediator. Functionalized iron oxide particles can assemble along the direction of applied magnetic field, and the directional dependence of the assembled iron oxide particles can be utilized for device purposes. We report here how such functionalized magnetic particles are used to modulate the bioelectrocatalytic signal by changing the orientation of the applied magnetic field. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We model the electrical behavior of organic light-emitting diodes whose emissive multilayer is formed by blends of an electron transporting material, tris-(8-hydroxyquinoline) aluminum (Alq(3)) and a hole transporting material, N,N-'-diphenyl-N,N-'-bis(1,1(')-biphenyl)-4,4-diamine. The multilayer is composed of layers of different concentration. The Alq(3) concentration gradually decreases from the cathode to the anode. We demonstrate that these graded devices have higher efficiency and operate at lower applied voltages than devices whose emissive layer is made of nominally homogeneous blends. Our results show an important advantage of graded devices, namely, the low values of the recombination rate distribution near the cathode and the anode, so that electrode quenching is expected to be significantly suppressed in these devices.
Resumo:
A diffusion-limited kinetic model was developed to describe the imidization of one-step polythioetherimide formation based on an endgroup diffusion model. The changes of conversion and viscosity during the imidization were monitored with thermogravimetric analysis and dynamic stress rheometry, respectively. It was observed that the imidization rate began to decelerate after a fast early stage, whereas the viscosity in the system increased dramatically after a period of low value. Amic acid and imide formations concurrently take place in the one-step polyimide formation, but the formation of amic acid is much slower than that of imide and is the rate-limiting step of imidization. When a second-order kinetic model was used to describe the imidization, the effect of viscosity on the diffusion resistance of reactive groups needed to be included. In order to predict the change of viscosity during the imidization, the Lipshitz-Macosko model was modified and introduced into the diffusion-limited kinetic model by the Stokes-Einstein equation. The comparison of the modeled results with experimental data indicated that the diffusion-limited kinetic model and the modified Lipshitz-Macosko model were able to efficiently predict the changes of conversion and viscosity with temperature and time during the one-step polythioetherimide formation. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The protonation process of two DTPA bis(amide) derivatives, DTPA-BDMA and DTPA-BDEA, was studied by using H-1 NMR titration and MOPAC calculation. Their protonation process was proposed in the order of the central amine, the terminal amines, the central carboxyl, the terminal carboxyl, the other terminal carboxyl and central amine. During the protonation of the terminal amine, there existed a large fraction of proton transfer from the central amine to the other terminal amine.