992 resultados para Sanskrit language, Buddhist Hybrid
Resumo:
The book grapples with the complex entanglement of identity construction, language choice, cultural heritage, and social orders. Specifically, the book investigates how Chinese Australians negotiate their Chineseness and capitalise on resources through learning Chinese as a heritage language in Australia and beyond. Though the book is concerned with Chinese Australians, knowledge built and lessons learned can provide insight into other multicultural settings where people of Chinese descent are becoming increasingly prominent in representing the cultural and linguistic diversity of the society, and more recently, in contributing to the economic dynamics of the society. In addition, the focus on the potholes and distractions as well as the benefits and gains of heritage language learning is not restricted to Chinese diaspora, but relevant to ethnic minority individuals and communities elsewhere.
Resumo:
This action research study investigated face-to-face and wiki technology collaboration to enhance students' English writing skills in a second language (L2) class in Vietnam. The thesis is underpinned by socio-cultural theory and argues that collaborative learning using wikis led to an enhancement in L2 writing skills. The findings show that collaborating via wikis challenged traditional L2 writing pedagogy in the following ways: increased student autonomy; understanding formative feedback; and awareness of process writing, genre and audiences. This study contributes practical knowledge about affordances and constraints of collaborative writing using wikis in Vietnam and other countries where traditional pedagogies are prevalent.
Resumo:
An efficient method for the analysis of hydroquinone at trace levels in water samples has been developed in the form of a fluorescent probe based on graphene quantum dots (GQDs). The analytical variable, fluorescence quenching, was generated from the formation of benzoquinone intermediates, which formed during the catalytic oxidation of hydroquinone by horseradish peroxidase (HRP). In general, the reaction mechanism involved hydroquinone, as an electron acceptor, which affected the surface state of GQDs via an electron transfer effect. The water-soluble GQDs were directly prepared by the pyrolysis of citric acid and with the use of the mentioned hybrid enzyme system, the detection limit for hydroquinone was as low as 8.4 × 10−8 M. Furthermore, this analysis was almost unaffected by other phenol and quinine compounds, such as phenol, resorcinol and other quinines, and therefore, the developed GQD method produced satisfactory results for the analysis of hydroquinone in several different lake water samples.
Resumo:
Mixed integer programming and parallel-machine job shop scheduling are used to solve the sugarcane rail transport scheduling problem. Constructive heuristics and metaheuristics were developed to produce a more efficient scheduling system and so reduce operating costs. The solutions were tested on small and large size problems. High-quality solutions and improved CPU time are the result of developing new hybrid techniques which consist of different ways of integrating simulated annealing and Tabu search techniques.
Resumo:
Simple, rapid, plasma-assisted synthesis of large-area arrays of vertically-aligned carbon nanowalls on highly-porous, transparent bare and gold-coated alumina membranes with the two pore sizes is reported. It is demonstrated that the complex patterns of vertically aligned nanowalls can nucleate and form different morphologies in the low-temperature plasmas. The process is stable, and the twofold change in the gas flow (10 and 20 sccm) does not noticeably influence the morphology of the nanowall pattern. Application of a thin (5 nm) gold layer to nanoporous membrane prior to the nanowall growth allows controlling the network morphology.
Resumo:
Four new hybrid (bolaphile/amphiphile) ion-pairs were synthesized. Electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. Membrane properties have also been examined by differential scanning calorimetry, microcalorimetry, temperature-dependent fluorescence anisotropy measurements, and UV-vis spectroscopy. The T-m values for the vesicular 1, 2, 3, 4, and 5 were 38, 12, 85, 31.3, and 41.6 degrees C, respectively. Interestingly the T-m values for 1 and 3 were found to depend on their concentration. The entrapment of small solute and the release capability have also been examined to demonstrate that these bilayers form enclosed vesicles. X-ray diffraction of the cast films has been performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 33 to 47 Angstrom. Finally, the above observations have been analyzed in light of the results obtained from molecular modeling studies. Thus we have demonstrated that membrane properties can be modulated by simple structural changes at the amphiphile level. It was shown that by judicious incorporation of central, isomeric, disubstituted aromatic units as structural anchors into different bolaphiles, one can modulate the properties of the resulting vesicles.
Resumo:
A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.
Resumo:
Two inorganic-organic hybrid framework iron phosphate-oxalates, I, [N2C4H12](0.5)[Fe-2(HPO4)(C2O4)(1.5)] and II, [Fe-2(OH2)PO4(C2O4)(0.5)] have been synthesized by hydrothermal means and the structures determined by X-ray crystallography. Crystal Data: compound I, monoclinic, spacegroup = P2(1)/c (No. 14), a=7.569(2) Angstrom, b=7.821(2) Angstrom, c=18.033(4) Angstrom, beta=98.8(1)degrees, V=1055.0(4) Angstrom(3), Z=4, M=382.8, D-calc=2.41 g cm(-3) MoK alpha, R-F=0.02; compound II, monoclinic, spacegroup=P2(1)/c (No. 14), a=10.240(1) b=6.375(3) Angstrom, 9.955(1) Angstrom, beta=117.3(1)degrees, V=577.4(1) Angstrom(3), Z=4, M=268.7, D-calc=3.09 g cm(-3) MoK alpha, R-F=0.03. These materials contain a high proportion of three-coordinated oxygens and [Fe2O9] dimeric units, besides other interesting structural features. The connectivity of Fe2O9 is entirely different in the two materials resulting in the formation of a continuous chain of Fe-O-Fe in II. The phosphate-oxalate containing the amine, I, forms well-defined channels. Magnetic susceptibility measurements show Fen to be in the high-spin state (t(2g)(4)e(g)(2)) in II, and in the intermediate-spin state (t(2g)(5)e(g)(1)) in I.
Resumo:
This chapter imports Michel Callon’s model of the ‘hybrid forum’ (Callon et al, 2009, p. 18) into social media research, arguing that certain kinds of hashtag publics can be mapped onto this model. It explores this idea of the hashtag as hybrid forum through the worked example of #agchatoz—a hashtag used as both ‘meetup’ organizer for Australian farmers and other stakeholders in Australian agriculture, and as a topic marker for general discussion of related issues. Applying the principles and techniques of digital methods (Rogers, 2013), we employ a standard suite of analytics to a longitudinal dataset of #agchatoz tweets. The results are used not only to describe various elements and dynamics of this hashtag, but also to experiment with the articulation of such approaches with the theoretical model of the hybrid forum, as well as exploring the ways that controversies animate and transform such forums as part of the emergence and cross-pollination of issue publics.
Resumo:
This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.
Resumo:
In this paper two nonlinear model based control algorithms have been developed to monitor the magnetorheological (MR) damper voltage. The main advantage of the proposed algorithms is that it is possible to directly monitor the voltage required to control the structural vibration considering the effect of the supplied and commanded voltage dynamics of the damper. The efficiency of the proposed techniques has been shown and compared taking an example of a base isolated three-storey building under a set of seismic excitations. Comparison of the performances with a fuzzy based intelligent control algorithm and a widely used clipped optimal strategy has also been shown.
A hybrid cellular automata model of multicellular tumour spheroid growth in hypoxic microenvironment
Resumo:
A three-dimensional hybrid cellular automata (CA) model is developed to study the dynamic process of multicellular tumour spheroid (MTS) growth by introducing hypoxia as an important microenvironment factor which influences cell migration and cell phenotype expression. The model enables us to examine the effects of different hypoxic environments on the growth history of the MTS and to study the dynamic interactions between MTS growth and chemical environments. The results include the spatial distribution of different phenotypes of tumour cells and associated oxygen concentration distributions under hypoxic conditions. The discussion of the model system responses to the varied hypoxic conditions reveals that the improvement of the resistance of tumour cells to a hypoxic environment may be important in the tumour normalization therapy.
Resumo:
This work deals with the formulation and implementation of an energy-momentum conserving algorithm for conducting the nonlinear transient analysis of structures, within the framework of stress-based hybrid elements. Hybrid elements, which are based on a two-field variational formulation, are much less susceptible to locking than conventional displacement-based elements within the static framework. We show that this advantage carries over to the transient case, so that not only are the solutions obtained more accurate, but they are obtained in fewer iterations. We demonstrate the efficacy of the algorithm on a wide range of problems such as ones involving dynamic buckling, complicated three-dimensional motions, et cetera.
Resumo:
The method of generalized estimating equations (GEEs) provides consistent estimates of the regression parameters in a marginal regression model for longitudinal data, even when the working correlation model is misspecified (Liang and Zeger, 1986). However, the efficiency of a GEE estimate can be seriously affected by the choice of the working correlation model. This study addresses this problem by proposing a hybrid method that combines multiple GEEs based on different working correlation models, using the empirical likelihood method (Qin and Lawless, 1994). Analyses show that this hybrid method is more efficient than a GEE using a misspecified working correlation model. Furthermore, if one of the working correlation structures correctly models the within-subject correlations, then this hybrid method provides the most efficient parameter estimates. In simulations, the hybrid method's finite-sample performance is superior to a GEE under any of the commonly used working correlation models and is almost fully efficient in all scenarios studied. The hybrid method is illustrated using data from a longitudinal study of the respiratory infection rates in 275 Indonesian children.