973 resultados para STRUCTURAL DETERMINANTS
Resumo:
This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.
Resumo:
In The Climate Change Review, Ross Garnaut emphasised that ‘Climate change and climate change mitigation will bring about major structural change in the agriculture, forestry and other land use sectors’. He provides this overview of the effects of climate change on food demand and supply: ‘Domestic food production in many developing countries will be at immediate risk of reductions in agricultural productivity due to crop failure, livestock loss, severe weather events and new patterns of pests and diseases.’ He observes that ‘Changes to local climate and water availability will be key determinants of where agricultural production occurs and what is produced.’ Gert Würtenberger has commented that modern plant breeding is particularly concerned with addressing larger issues about nutrition, food security and climate change: ‘Modern plant breeding has an increasing importance with regard to the continuously growing demand for plants for nutritional and feeding purposes as well as with regard to renewal energy sources and the challenges caused by climate changes.’ Moreover, he notes that there is a wide array of scientific and technological means of breeding new plant varieties: ‘Apart from classical breeding, technologies have an important role in the development of plants that satisfy the various requirements that industrial and agricultural challenges expect to be fulfilled.’ He comments: ‘Plant variety rights, as well as patents which protect such results, are of increasingly high importance to the breeders and enterprises involved in plant development programmes.’ There has been larger interest in the intersections between sustainable agriculture, environmental protection and food security. The debate over agricultural intellectual property is a polarised one, particularly between plant breeders, agricultural biotechnology companies and a range of environmentalist groups. Susan Sell comments that there are complex intellectual property battles surrounding agriculture: 'Seeds are at the centre of a complex political dynamic between stakeholders. Access to seeds concerns the balance between private rights and public obligations, private ownership and the public domain, and commercial versus humanitarian objectives.' Part I of this chapter considers debates in respect of plant breeders’ rights, food security and climate change in relation to the UPOV Convention 1991. Part II explores efforts by agricultural biotechnology companies to patent climate-ready crops. Part III considers the report of the Special Rapporteur for Food, Olivier De Schutter. It looks at a variety of options to encourage access to plant varieties with climate adaptive or mitigating properties.
Resumo:
Structural identification (St-Id) can be considered as the process of updating a finite element (FE) model of a structural system to match the measured response of the structure. This paper presents the St-Id of a laboratory-based steel through-truss cantilevered bridge with suspended span. There are a total of 600 degrees of freedom (DOFs) in the superstructure plus additional DOFs in the substructure. The St-Id of the bridge model used the modal parameters from a preliminary modal test in the objective function of a global optimisation technique using a layered genetic algorithm with patternsearch step (GAPS). Each layer of the St-Id process involved grouping of the structural parameters into a number of updating parameters and running parallel optimisations. The number of updating parameters was increased at each layer of the process. In order to accelerate the optimisation and ensure improved diversity within the population, a patternsearch step was applied to the fittest individuals at the end of each generation of the GA. The GAPS process was able to replicate the mode shapes for the first two lateral sway modes and the first vertical bending mode to a high degree of accuracy and, to a lesser degree, the mode shape of the first lateral bending mode. The mode shape and frequency of the torsional mode did not match very well. The frequencies of the first lateral bending mode, the first longitudinal mode and the first vertical mode matched very well. The frequency of the first sway mode was lower and that of the second sway mode was higher than the true values, indicating a possible problem with the FE model. Improvements to the model and the St-Id process will be presented at the upcoming conference and compared to the results presented in this paper. These improvements will include the use of multiple FE models in a multi-layered, multi-solution, GAPS St-Id approach.
Resumo:
Study Design Cross-sectional study. Objectives To compare erector spinae (ES) muscle fatigue between chronic non-specific lower back pain (CNLBP) sufferers and healthy subjects from a biomechanical perspective during fatiguing isometric lumbar extensions. Background Paraspinal muscle maximal contraction and fatigue are used as a functional predictor for disabilities. The simplest method to determine muscle fatigue is by evaluating the evolution during specific contractions, such as isometric contractions. There are no studies that evaluate the evolution of the ES muscle during fatiguing isometric lumbar extensions and analyse functional and architectural variables. Methods In a pre-calibrated system, participants performed a maximal isometric extension of the lumbar spine for 5 and 30 seconds. Functional variables (torque and muscle activation) and architecture (pennation angle and muscle thickness) were measured using a load cell, surface electromyography and ultrasound, respectively. The results were normalised and a reliability study of the ultrasound measurement was made. Results: The ultrasound measurements were highly reliable, with Cronbach’s alpha values ranging from 0.951 0.981. All measured variables shown significant differences before and after fatiguing isometric lumbar extension. Conclusion During a lumbar isometric extension test, architecture and functional variables of the ES muscle could be analised using ultrasound, surface EMG and load cell. In adition, during an endurance test, ES muscle suffers an acute effect on architectural and functional variables.
Resumo:
Understanding how the brain matures in healthy individuals is critical for evaluating deviations from normal development in psychiatric and neurodevelopmental disorders. The brain's anatomical networks are profoundly re-modeled between childhood and adulthood, and diffusion tractography offers unprecedented power to reconstruct these networks and neural pathways in vivo. Here we tracked changes in structural connectivity and network efficiency in 439 right-handed individuals aged 12 to 30 (211 female/126 male adults, mean age=23.6, SD=2.19; 31 female/24 male 12 year olds, mean age=12.3, SD=0.18; and 25 female/22 male 16 year olds, mean age=16.2, SD=0.37). All participants were scanned with high angular resolution diffusion imaging (HARDI) at 4 T. After we performed whole brain tractography, 70 cortical gyral-based regions of interest were extracted from each participant's co-registered anatomical scans. The proportion of fiber connections between all pairs of cortical regions, or nodes, was found to create symmetric fiber density matrices, reflecting the structural brain network. From those 70 × 70 matrices we computed graph theory metrics characterizing structural connectivity. Several key global and nodal metrics changed across development, showing increased network integration, with some connections pruned and others strengthened. The increases and decreases in fiber density, however, were not distributed proportionally across the brain. The frontal cortex had a disproportionate number of decreases in fiber density while the temporal cortex had a disproportionate number of increases in fiber density. This large-scale analysis of the developing structural connectome offers a foundation to develop statistical criteria for aberrant brain connectivity as the human brain matures.
Resumo:
The human connectome has recently become a popular research topic in neuroscience, and many new algorithms have been applied to analyze brain networks. In particular, network topology measures from graph theory have been adapted to analyze network efficiency and 'small-world' properties. While there has been a surge in the number of papers examining connectivity through graph theory, questions remain about its test-retest reliability (TRT). In particular, the reproducibility of structural connectivity measures has not been assessed. We examined the TRT of global connectivity measures generated from graph theory analyses of 17 young adults who underwent two high-angular resolution diffusion (HARDI) scans approximately 3 months apart. Of the measures assessed, modularity had the highest TRT, and it was stable across a range of sparsities (a thresholding parameter used to define which network edges are retained). These reliability measures underline the need to develop network descriptors that are robust to acquisition parameters.
Resumo:
Studies of cerebral asymmetry can open doors to understanding the functional specialization of each brain hemisphere, and how this is altered in disease. Here we examined hemispheric asymmetries in fiber architecture using diffusion tensor imaging (DTI) in 100 subjects, using high-dimensional fluid warping to disentangle shape differences from measures sensitive to myelination. Confounding effects of purely structural asymmetries were reduced by using co-registered structural images to fluidly warp 3D maps of fiber characteristics (fractional and geodesic anisotropy) to a structurally symmetric minimal deformation template (MDT). We performed a quantitative genetic analysis on 100 subjects to determine whether the sources of the remaining signal asymmetries were primarily genetic or environmental. A twin design was used to identify the heritable features of fiber asymmetry in various regions of interest, to further assist in the discovery of genes influencing brain micro-architecture and brain lateralization. Genetic influences and left/right asymmetries were detected in the fiber architecture of the frontal lobes, with minor differences depending on the choice of registration template.
Resumo:
To classify each stage for a progressing disease such as Alzheimer’s disease is a key issue for the disease prevention and treatment. In this study, we derived structural brain networks from diffusion-weighted MRI using whole-brain tractography since there is growing interest in relating connectivity measures to clinical, cognitive, and genetic data. Relatively little work has usedmachine learning to make inferences about variations in brain networks in the progression of the Alzheimer’s disease. Here we developed a framework to utilize generalized low rank approximations of matrices (GLRAM) and modified linear discrimination analysis for unsupervised feature learning and classification of connectivity matrices. We apply the methods to brain networks derived from DWI scans of 41 people with Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly healthy controls and 221 young healthy controls. Our results show that this new framework can significantly improve classification accuracy when combining multiple datasets; this suggests the value of using data beyond the classification task at hand to model variations in brain connectivity.
Resumo:
Purpose The purpose of this study is to compare quality perceptions of virtual servicescapes and physical service encounters among buyers and renters of real estate. Design/methodology/approach Qualitative data from a sample of 27 professionals engaged in higher education in the USA are gathered by recorded interview before being transcribed and imported into MAXQDA 2007 software for analytical coding. Findings Particular differences are found to exist between renters and buyers with regard to specific service attributes – for example, description of properties and type of visuals during the pre‐purchase stage, knowledge/experience and honest behavior of realtors during the service encounter stage and a continuous relationship with the realtor in the post‐encounter stage. Research limitations/implications Generalization of the results is limited because the study utilizes data from only one industry (real estate) and from only one demographic segment (professionals in higher education). Practical implications Real‐estate firms need to pay attention to both the training of agents and the design and content of their websites. Originality/value This paper contributes to knowledge regarding virtual servicescapes in professional services.
Resumo:
This paper presents the results of a research project aimed at examining the capabilities and challenges of two distinct but not mutually exclusive approaches to in-service bridge assessment: visual inspection and installed monitoring systems. In this study, the intended functionality of both approaches was evaluated on its ability to identify potential structural damage and to provide decision-making support. Inspection and monitoring are compared in terms of their functional performance, cost, and barriers (real and perceived) to implementation. Both methods have strengths and weaknesses across the metrics analyzed, and it is likely that a hybrid evaluation technique that adopts both approaches will optimize efficiency of condition assessment and ultimately lead to better decision making.
Resumo:
Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.
Resumo:
This article reports the main features of an innovative full-scale Structural Health Monitoring (SHM) system which has been implemented onto a landmark building on QUT Gardens Point Campus and its efficacy in capturing the recent Queensland earthquakes although they occurred almost 300 km away from where the system is located.
Resumo:
This paper investigates the influence of structural sealant joints on the blast performance of laminated glass (LG) panels, using a comprehensive numerical procedure. A parametric study was carried out by varying the width, thickness and the Young’s modulus (E) of the structural silicone sealant joints and the behavior of the LG panel was studied under two different blast loads. Results show that these parameters influence the blast response of LG panels, especially under the higher blast load. Sealant joints that are thicker, have smaller widths and lower E values increase the flexibility at the supports and hence increase the energy absorption of the LG panel while reducing the support reactions. Results also confirmed that sealant joints designed according to current standards perform well under blast loads. Modeling techniques presented in this paper could be used to complement and supplement the guidance in existing design standards. The new information generated in this paper will contribute towards safer and more economical designs of entire facade systems including window glazing, frames and supporting structures.
Resumo:
Background Although there are many structural neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) in children, there are inconsistencies across studies and no consensus regarding which brain regions show the most robust area or volumetric reductions relative to control subjects. Our goal was to statistically analyze structural imaging data via a meta-analysis to help resolve these issues. Methods We searched the MEDLINE and PsycINFO databases through January 2005. Studies must have been written in English, used magnetic resonance imaging, and presented the means and standard deviations of regions assessed. Data were extracted by one of the authors and verified independently by another author. Results Analyses were performed using STATA with metan, metabias, and metainf programs. A meta-analysis including all regions across all studies indicated global reductions for ADHD subjects compared with control subjects, standardized mean difference equal to .408, p less than .001. Regions most frequently assessed and showing the largest differences included cerebellar regions, the splenium of the corpus callosum, total and right cerebral volume, and right caudate. Several frontal regions assessed in only two studies also showed large significant differences. Conclusions This meta-analysis provides a quantitative analysis of neuroanatomical abnormalities in ADHD and information that can be used to guide future studies.
Resumo:
Traffic congestion has been a growing issue in many metropolitan areas during recent years, which necessitates the identification of its key contributors and development of sustainable strategies to help decrease its adverse impacts on traffic networks. Road incidents generally and crashes specifically have been acknowledged as the cause of a large proportion of travel delays in urban areas and account for 25% to 60% of traffic congestion on motorways. Identifying the critical determinants of travel delays has been of significant importance to the incident management systems which constantly collect and store the incident duration data. This study investigates the individual and simultaneous differential effects of the relevant determinants on motorway crash duration probabilities. In particular, it applies parametric Accelerated Failure Time (AFT) hazard-based models to develop in-depth insights into how the crash-specific characteristic and the associated temporal and infrastructural determinants impact the duration. AFT models with both fixed and random parameters have been calibrated on one year of traffic crash records from two major Australian motorways in South East Queensland and the differential effects of determinants on crash survival functions have been studied on these two motorways individually. A comprehensive spectrum of commonly used parametric fixed parameter AFT models, including generalized gamma and generalized F families, have been compared to random parameter AFT structures in terms of goodness of fit to the duration data and as a result, the random parameter Weibull AFT model has been selected as the most appropriate model. Significant determinants of motorway crash duration included traffic diversion requirement, crash injury type, number and type of vehicles involved in a crash, day of week and time of day, towing support requirement and damage to the infrastructure. A major finding of this research is that the motorways under study are significantly different in terms of crash durations; such that motorway exhibits durations that are on average 19% shorter compared to the durations on motorway. The differential effects of explanatory variables on crash durations are also different on the two motorways. The detailed presented analysis confirms that, looking at the motorway network as a whole, neglecting the individual differences between roads, can lead to erroneous interpretations of duration and inefficient strategies for mitigating travel delays along a particular motorway.