982 resultados para SBA-15 nanostructured silica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 Medium Access Control (MAC) protocol is an enabling technology for time sensitive wireless sensor networks thanks to its Guaranteed-Time Slot (GTS) mechanism in the beacon-enabled mode. However, the protocol only supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTSs may be only partially used, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of a GTS by multiple nodes, while all their (delay, bandwidth) requirements are still satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our proposal improves the bandwidth utilization compared to the explicit allocation used in the IEEE 802.15.4 protocol standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze the performance limits of the slotted CSMA/CA mechanism of IEEE 802.15.4 in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent) on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This technical report is to provide a reference guide to the implementation of the IEEE 802.15.4 protocol in nesC/TinyOS for the MICAz motes. The implementation is provided as a tool that can be used to implement, test and evaluate the current functionalities defined in the protocol standard as well as to enable the development of functionalities not yet implemented and new add-ons to the protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The IEEE 802.15.4 has been adopted as a communication protocol standard for Low-Rate Wireless Private Area Networks (LRWPANs). While it appears as a promising candidate solution for Wireless Sensor Networks (WSNs), its adequacy must be carefully evaluated. In this paper, we analyze the performance limits of the slotted CSMA/CA medium access control (MAC) mechanism in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility and potential for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent), the number of nodes and the data frame size on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We also analytically evaluate the impact of the slotted CSMA/CA overheads on the saturation throughput. We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This technical report describes the implementation details of the Implicit GTS Allocation Mechanism (i-GAME), for the IEEE 802.15.4 protocol. The i-GAME was implemented in nesC/TinyOS for the CrossBow MICAz mote, over our own implementation of the IEEE 802.15.4 protocol stack. This document provides the implementation details, including a description of the i-GAME software interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This report tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collisionfree beacon frame scheduling schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the injection moulding of polypropylene reinforced with hard glass fibres, die materials are commonly subjected to severe abrasive wear. In order to improve its wear resistance, an unbalanced magnetron sputtering PVD compositional monolayered coating has been produced. The film was composed by a nanostructured TiB2 monolayer. Microstructure characterization and thickness evaluation were conducted by scanning electron microscopy (SEM). Film topography and roughness were accessed by SEM and Atomic Force Microscopy (AFM). The phase analyse was investigated by X-ray diffraction (XRD), using Cu Kalpha radiation. Scratch tests were conducted in order to study the film adhesion to the substrate. Load-Displacement curves (nanoindentation analysis) allowed measuring the film hardness and Young's modulus. A ball-cratering tribometer was used to determine the micro-abrasion laboratorial wear resistance, under different tests conditions, using SiC particles in distilled water slurry. At the end of these tests, the worn surfaces were analyzed by SEM and Energy Dispersive X-ray Spectroscopy (EDS) in order to compare these results with some other coatings already tested in the same conditions. To test the practical wear resistance, 135000 injection cycles were done in a plastic injection industrial mould. Coated samples were put on the plastic feed canal, after a turbulent zone. In these tests, a 30% (wt) glass fibres reinforced polypropylene was used. Worn sample surfaces were analyzed by SEM after 45.000 and 90.000 cycles. Image analyses were made in order to evaluate the damage increases and to observe the wear mechanisms involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the implementation of the OFDM demodulator and the Viterbi decoder, proposed as part of a wireless High Definition video receiver to be integrated in an FPGA. These blocks were implemented in a Xilinx Virtex-6 FPGA. The complete system was previously modeled and simulated using MATLAB/Simulink to extract importante hardware characteristics for the FPGA implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The injection process of glass fibres reinforced plastics promotes the moulds surface degradation by erosion. In order to improve its wear resistance, several kinds of PVD thin hard coatings were used. It is well-known that nanostructures present a better compromise between hardness and toughness. Indeed, when the coating is constituted by a large number of ultra-thin different layers, cracks and interface troubles tend to decrease. However, it is not clear that these nanostructures present a better wear behaviour in erosion processes. In order to study its wear behaviour, a sputtered PVD nanostructured TiAlCrSiN coating was used. The substrate and film surfaces topography were analyzed by profilometry and atomic force microscopy techniques. Film adhesion to the substrate was evaluated by scratch tests. The surface hardness was measured with a Vickers micro-hardness tester. The wear resistance was evaluated by micro-abrasion with a rotating ball tribometer tests. Slurry of SiC particles in distilled water was used in order to provoke the surface abrasion. Different duration tests were performed in order to analyze the wear evolution. After these tests, the wear mechanisms developed were analyzed by scanning electron microscopy. Wear craters were measured and the wear rate was calculated and discussed. With the same purpose, coated inserts were mounted in an injection mould working with a 30% glass fibres reinforced polypropylene. After 45 000 cycles no relevant wear was registered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Applied Physics Letters, 89

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada à Escola Superior de Educação de Lisboa para a obtenção do grau de Mestre em Intervenção Precoce

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo: Cement, as well as the remaining constituents of self-compacting mortars, must be carefully selected, in order to obtain an adequate composition with a granular mix as compact as possible and a good performance in the fresh state (self-compacting effect) and the hardened state (mechanical and durability-related behavior). Therefore in this work the possibility of incorporating nano particles in self-compacting mortars was studied. Nano materials are very reactive due mostly to their high specific surface and show a great potential to improve the properties of these mortars, both in mechanical and durability terms. In this work two nano materials were used, nano silica (nano SiO2) in colloidal state and nano titanium (nano TiO2) in amorphous state, in two types of self-compacting mortars (ratio binder:sand of 1:1 and 1:2). The self-compacting mortar mixes have the same water/cement ratio and 30% of replacement of cement with fly ashes. The influence of nano materials nano-SiO2 and nano-TiO2 on the fresh and hardened state properties of these self-compacting mortars was studied. The results show that the use of nano materials in repair and rehabilitation mortars has significant potential but still needs to be optimized. (C) 2015 Elsevier Ltd. All rights reserved.