984 resultados para Radioactive fallout.
Resumo:
The bastnasite of Baotou (China) was roasted in concentrated sulfuric acid at 250-300 degreesC and the calcined products were leached by water. Almost all rare earths (RE) were moved into solutions in trivalent along with some radioactive impurity thorium(IV) (Th(IV))which accounts for 0.4% of RE and other impurities such as Fe(III), Ca, F, P, etc. Through fractional extraction (seven stages for extraction and nine for scrubbing), the mass ratio of Th(IV) and RE (ThO2/REO) in solution has decreased to 5 x 10(-6). The purity of ThO2 product recovered from organic phase is above 99%. The iron(III) in solutions can be removed in the form of precipitation by adding some magnesia into the solutions. Then RE can be concentrated by solvent extraction with 2-ethylhexyl phosphinic acid 2-ethylhexylester (P-507). The results of fractional extraction show that the concentration of total RE in aqueous solutions stripped by hydrochloric acid is over 200 g REO/I with the yield of RE above 99%. Individual RE can be attained by solvent extraction with P507 in the following process.
Resumo:
Separation of Th4+ and RE3+ was investigated by hollow fiber membrane extraction with N1923 in countercurrent recirculating operation. The effect of Hf concentration in aqueous phase and flow rates of aqueous and organic phases on mass transfer coefficient was tested. Then the extraction of Th4+ from RE sulfate obtained from Baotou ore was carried out. The results obtained show that the mass transfer coefficient of Th4+ changes with the flow rate of aqueous phase, but does not change with the flow rate of organic phase and H+ concentration in aqueous phase, which suggests that the mass transfer rate of Th4+ is controlled bg that in the water critical layer, The mass transfer rate of RE3+ does not change with the flow rate of water phase, changes a little with the flow rate of organic phase, and changes with H+ concentration, which suggests that the mass transfer rate is controlled by their reaction rate with N1923. Th4+ could be extracted completely in 8 h from RE sulfate solution of Baotou ore with relatively less extraction of RE3+. So the separation of radioactive element under the sealed condition could be done.
Resumo:
The noble gas nuclide abundances and isotopic ratios of the upmost layer of Fe-Mn crusts from the western and central Pacific Ocean have been determined. The results indicate that the He and Ar nuclide abundances and isotopic ratios can be classified into two types: low He-3/He-4 type and high He-3/He-4 type. The low He-3/He-4 type is characterized by high He-4 abundances of 191x10(-9) cm(3.)STP(.)g(-1) on average, with variable He-4, Ne-20 and Ar-40 abundances in the range (42.8-421)x10(-9) cm(3.)STP(.)g(-1), (5.40-141)x10(-9)cm(3.)STP(.)g(-1), and (773-10976)x10(-9) cm(3.)STP(.)g(-1), respectively. The high He-3/He-4 samples are characterized by low He-4 abundances of 11.7x10(-9) cm(3.)STP(.)g(-1) on average, with He-4, Ne-20 and Ar-40 abundances in the range of (7.57-17.4)x10(-9) cm(3.)STP(.)g(-1), (110.4-25.5)x10(-9) cm(3.)STP(.)g(-1) and (5354-9050)x10(-9) cm(3.)STP(.)g(-1), respectively. The low He-3/He-4 samples have He-3/He-4 ratios (with RIRA ratios of 2.04-2.92) which are lower than those of MORB (R/R-A=8 +/- 1) and Ar-40/Ar-36 ratios (447-543) which are higher than those of air (295.5). The high He-3/He-4 samples have He-3/He-4 ratios (with R/R-A ratios of 10.4-12.0) slightly higher than those of MORB (R/R-A=8 +/- 1) and Ar-40/Ar-36 ratios (293-299) very similar to those of air (295.5). The Ne isotopic ratios (Ne-20/Ne-22 and Ne-21/Ne-22 ratios of 10.3-10.9 and 0.02774-0.03039, respectively) and the Ar-38/Ar-36 ratios (0.1886-0.1963) have narrow ranges which are very similar to those of air (the Ne-20/Ne-22, Ne-21/Ne-22, Ar-38/Ar-36 ratios of 9.80, 0.029 and 0.187, respectively), and cannot be differentiated into different groups. The noble gas nuclide abundances and isotopic ratios, together with their regional variability, suggest that the noble gases in the Fe-Mn crusts originate primarily from the lower mantle. The low He-3/He-4 type and high He-3/He-4 type samples have noble gas characteristics similar to those of HIMU (High U/Pb Mantle)- and EM (Enriched Mantle)-type mantle material, respectively. The low He-3/He-4 type samples with HIMU-type noble gas isotopic ratios occur in the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain and the Mid-Pacific Seamounts whereas the high He-3/He-4 type samples with EM-type noble gas isotopic ratios occur in the Line Island Chain. This difference in noble gas characteristics of these crust types implies that the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain, and the Mid-Pacific Seamounts originated from HIMU-type lower mantle material whereas the Line Island Chain originated from EM-type lower mantle material. This finding is consistent with variations in the Pb-isotope and trace element signatures in the seamount lavas. Differences in the mantle surce may therefore be responsible for variations in the noble gas abundances and isotopic ratios in the Fe-Mn crusts. Mantle degassing appears to be the principal factor controlling noble gas isotopic abundances in Fe-Mn crusts. Decay of radioactive isotopes has a negligible influence on the nuclide abundances and isotopic ratios of noble gases in these crusts on the timescale of their formation.
Resumo:
Influence of La3+ on the accumulation of trace elements (Se-75, Co-56, Rb-83, V-48, (95)mTc, and Ga-67) in chloroplasts of cucumber seedling leaves was studied by a radioactive multitracer technique. At the same time, chloroplast contents of different concentrations of La3+ treatment were calculated. It was observed that chloroplast contents peaked at 0.02 mM La3+ treatment and that the uptake and distribution of these trace elements in chloroplasts of cucumber seedling leaves are different under different La3+, treatments. With the increase of lanthanum concentrations from 0.002 to 2 mM, the uptake percentages of Se-75, Co-56, and Rb-83 presented an obvious increase and then sharply decreased in contrast to the nonlanthanum treatment, whereas there appeared a sharp decrease and then restored control level in the uptake of V-48. The other two trace elements, namely Tc-95m and Ga-67, were accumulated only in the presence of 0.02 mM La3+. The results indicate that lanthanum treatments to growing the cucumber lead to the change of trace element uptake in the chloroplasts of leaves, which suggest that lanthanum might influence the accumulation of trace elements in chloroplasts of cucumber seedling leaves by regulation of various ion transport mechanisms, thus affecting the photosystem of leaves.
Resumo:
The effects of La3+ on the uptake of trace elements (Se, Co, V, and Tc) in cucumber plants were studied by a radioactive multitracer technique. It was observed that the uptake and distribution of these trace elements in roots, stems, and leaves are different under different La3+, treatments. Furthermore, in the control, the plant accumulates Se-75, Co-56, and V-48 all in the order roots>leaves>stems, whereas Tc-95m was in the order leaves>stems>roots. The accumulations of Se-75 and Tc-95m in plants treated with different La3+ concentration were in the same order as those in the control, but the uptakes percentages of other kinds of element changed differently. The results indicate that lanthanum treatments to a growing cucumber lead to the change of uptake of trace elements, which suggest that a rare earth element is directly or indirectly involved in the ion transport of the plant and affects plant growth by regulating the uptake and distribution of elements that influence the plant cell physiology and biochemistry.
Resumo:
为解决在核废料清理的问题,结合了机器人和吊车的特点,提出了一种新型的主从式处理机器人,并介绍了机构和控制方法。
Resumo:
This paper selected the Taklamakan Desert and the Badain Jaran Desert as the research areas, tested the carbonate content of surface-sand samples of dunes using Eijkelkamp carbonate goniophotometer, and analyzed the spatial-distribution characteristics of carbonate and estimated the carbonate-stock and secondary carbonate-stock in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. In addition, the paper test XRD, SEM, TDA, stable carbon isotope and radioactive strontium isotope of lacustrine deposits in the Taklamakan Desert and carbonates, such as kunkar, root canal, lacustrine deposits, sinter and calcrete, in the Badain Jaran Desert. Resting on the achievements by our predecessors, it analyzed the mineral-composition differences of the carbonates, calculated the contents of secondary carbonate and, furthermore, evaluated their potential of sequestration of CO2 in the atmosphere. The overall goal of this study was to increase our understanding of soil carbonate in the context of carbon sequestration in the arid region in China. That is, to advance our understanding about whether or not secondary carbonate in desert is a sink for atmospheric CO2. The following viewpoints were obtained: 1 Carbonate contents of surface-sand samples decend from the south to the north of the Taklamakan Desert. The minimum lies in the south and the maxmum in the mid. Carbonate content of surface-sand of megadunes in the Badain Jaran Desert has low value generally in the dune-crest and the base of slope, and large value in the mid. The average of Carbonate contents of all sorts of collected samples in the same area of the Taklamakan Desert has small diffetences. The average is about 9%. 2 Using carbonate contents as key parameters, calculate the carbon-stock of carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Deser.They are 1.13Pg and 0.19 Pg respectively. There are 0.53Pg and 0.088Pg carbon-stock of secondary-carbonates in 1m depth of surface sand in the Taklamakan Desert and the Badain Jaran Desert. 3 Through testing data from XRD (X-ray diffraction)and TAD ( Thermal Analysis Data), the most significant conclusion derived from is that the main mineral ingredient is calcite in different carbonate substances in arid regions, From the SEM(Scanning electron microscopy ) images, can obtains the information about the micro environment of different carbonate forms in which they can grow. 4 Selected gas by termal cracking and traditional phosphoric acid method, their δ13C show that δ13C is a good parameter to indicate the micro environment in which different secondary carbonate forms. From the δ13C of the same type samples, if the redeposit degree is hard, theδ13C is light, the redeposit degree is weak, the δ13C is heave. and the δ13C of the different type samples, δ13C is mainly controlled by the micro environment in which secondary formed. if the procedure is characterized by redeposit and dissolve of marine facies carbonate, δ13C is heavy, it is characterized by CO2 which produced by plant respiration,δ13C is light. 5 From the δ13C of lacustrine deposit in the different grain size, there exsit certain differences in their micro environment and secondary degree among different grain size in the same grade. 6 The secondary carbonate content of lacustrine deposits in Taklimakan Desert is 47.26%. And those of root canal, sinter, calcrete, kunkar, lacustrine deposit and surface sand in Badain Jaran Desert are 91.74%, 78.46%, 76.26%, 87.87%, 85.37%and 46.49%, respectively. Of different grain size samples, the secondary carbonate contents of coarse fraction (20-63μm), sub-coarse fraction (5-20μm) and fine fraction (<5μm) are 80.10%, 47.2%and 50.07%, respectively. 7 There is no obvious relevance betweenδ13C of secondary carbonate and the content of secondary carbonate,theδ13C of secondary carbonate mainly reflects the parameters of secondary process, the content of secondary carbonate reflects difference of secondary degree.. 8 Silicates potentially supply 3.4 pencent calcium source during forming process of lacustrine deposits in Taklimakan Desert. If calcium source is mainly supplied by goundwater, it can be calculated that about 5.18 %, 6.13%, 5.68%, 5.64 % and 6.82% silicates supply calcium source respectively for root canal, kunkar, lacustrine deposit, calcrete and sinter, during the forming process of different kinds of carbonates in Badain Jaran Desert.
Resumo:
Numerical modeling of groundwater is very important for understanding groundwater flow and solving hydrogeological problem. Today, groundwater studies require massive model cells and high calculation accuracy, which are beyond single-CPU computer’s capabilities. With the development of high performance parallel computing technologies, application of parallel computing method on numerical modeling of groundwater flow becomes necessary and important. Using parallel computing can improve the ability to resolve various hydro-geological and environmental problems. In this study, parallel computing method on two main types of modern parallel computer architecture, shared memory parallel systems and distributed shared memory parallel systems, are discussed. OpenMP and MPI (PETSc) are both used to parallelize the most widely used groundwater simulator, MODFLOW. Two parallel solvers, P-PCG and P-MODFLOW, were developed for MODFLOW. The parallelized MODFLOW was used to simulate regional groundwater flow in Beishan, Gansu Province, which is a potential high-level radioactive waste geological disposal area in China. 1. The OpenMP programming paradigm was used to parallelize the PCG (preconditioned conjugate-gradient method) solver, which is one of the main solver for MODFLOW. The parallel PCG solver, P-PCG, is verified using an 8-processor computer. Both the impact of compilers and different model domain sizes were considered in the numerical experiments. The largest test model has 1000 columns, 1000 rows and 1000 layers. Based on the timing results, execution times using the P-PCG solver are typically about 1.40 to 5.31 times faster than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver, because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in the MODFLOW source tree. 2. P-MODFLOW, a domain decomposition–based model implemented in a parallel computing environment is developed, which allows efficient simulation of a regional-scale groundwater flow. The basic approach partitions a large model domain into any number of sub-domains. Parallel processors are used to solve the model equations within each sub-domain. The use of domain decomposition method to achieve the MODFLOW program distributed shared memory parallel computing system will process the application of MODFLOW be extended to the fleet of the most popular systems, so that a large-scale simulation could take full advantage of hundreds or even thousands parallel processors. P-MODFLOW has a good parallel performance, with the maximum speedup of 18.32 (14 processors). Super linear speedups have been achieved in the parallel tests, indicating the efficiency and scalability of the code. Parallel program design, load balancing and full use of the PETSc were considered to achieve a highly efficient parallel program. 3. The characterization of regional ground water flow system is very important for high-level radioactive waste geological disposal. The Beishan area, located in northwestern Gansu Province, China, is selected as a potential site for disposal repository. The area includes about 80000 km2 and has complicated hydrogeological conditions, which greatly increase the computational effort of regional ground water flow models. In order to reduce computing time, parallel computing scheme was applied to regional ground water flow modeling. Models with over 10 million cells were used to simulate how the faults and different recharge conditions impact regional ground water flow pattern. The results of this study provide regional ground water flow information for the site characterization of the potential high-level radioactive waste disposal.
Resumo:
The continental mantle geochemical characteristics and crust-mantle evolution in the west of Yangtze Plate was discussed through the study of some within-plate basic-ultrabasic rocks from Lower Proterozoic to Later Paleozoic in this paper. In the Lower Proterozoic, the plate subduction between the pre-Tethys Proterozoic Ocean Plate and paleo-Yangtze Plate induced some basic volcanic formed in the island arc-back arc surrounding, which were represented by Ailaoshan Group-Dibadu Formation-Dahongshan Group, and there existed EM I component in the mantle source. The Middle Proterozoic Caiziyuan peridotite was formed in the epicontinental basin at the ocean-land boundary or within-continent rift basin. Its mantle source could be metasomatized by the dehydration fluid of subducted plate, and much initial radioactive ~(143)Nd was added to the source. In the Later Proterozoic, some rifts at the epicontinent or within-continent was formed due to the pre-Tethys oceanic plate subduction, and within-plate hot-spot Dahongshan diabase came into being. The whole-rock isochronal age of diabase is 1066±110Ma, and its mantle source was enriched Nd isotope and trace element which was related to the primary volatile component from asthenosphere and mantle plume. Its mantle source was included "FOZO" component representing mantle plume. The layer ultramafic rocks located at the Panxi Rift in the Middle-Later Paleozoic were resulted from different period and source. The early ultramafic indicated the incipient action of Panxi Rift, which is residue of continental lithospheric partial melting. Its mantle source involved subducted material and had distinct EM II component. The Emeishan basalt in the Later Paleozoic was typical continental flood basalt and its source also contained EM II component. The subduction of paleo-Tethys Ocean Plate provided essential dynamic condition for the large-scale opening of Panxi Rift, while the mantle plume supplied much material for Emeishan basalt. However, the plume was contaminated by the metasomatized continental mantle lithosphere in its upwelling process, which resulted in the Sr isotopic and incompatible elemental enrichment, and the Nd isotope kept down the weak-depleted character of mantle plume. The magmatic history in the west of Yangtze Plate is the tectonic process between pre-Tethys, paleo-Tethys Oceanic Plate and Yangtze Plate in a long history. Due to the subduction of oceanic plate, the crustal source material took part in the crust-mantle evolution widely. the continental mantle lithosphere in the west of Yangtze Plate was metasomatized by the fluid released by the subducted plate and the primary volatile from deeper mantle, and the mantle source include obvious enriched component.
Resumo:
赤泥是氧化铝生产过程中的工业固体废弃物,具有强碱性和高放射性两个特点。目前赤泥的处置方法主要是建设赤泥堆场,供长期堆放,尚没有对其进行大规模利用的成熟技术。 随着铝工业的发展,亟需开发赤泥处置与资源化利用的新工艺技术。本论文运用环境地球化学的理论方法,采用化学分析、选矿分离、放射性测试等技术手段,对贵州铝厂拜耳法赤泥的放射性特征进行了矿物学研究,并利用铁钛着色机理生产赤泥墙体装修材料进行了应用试验研究,指明了赤泥规模化综合利用的途径。 通过研究,得到以下主要结论: 1)初步确定了赤泥放射性元素主要来源于铝土矿原矿,并赋存于原矿残留的锆石和独居石中。 2) 贵州铝厂拜耳法赤泥所含放射性偏高,倘若利用赤泥制作建筑主体材料,需要慎重考虑。 3)探讨了不同选矿方法对赤泥放射性强度的变化情况,重选、磁选、加磁粉磁选所得赤泥组分与赤泥原样放射性相比较,没有显著性差异。采用现有选矿技术,难以达到分离富集赤泥中含放射性组分。 4)利用拜耳法赤泥中富含Fe2O3和TiO2的着色机理,加入一定量的页岩可以制得金红-褐色系列颜色的彩色墙体装修材料。采用现有烧结砖厂一般生产工艺,利用拜耳法赤泥生产烧结制品,是规模化处理赤泥的一条可行途径。 本论文的研究结果指明了赤泥可行的利用途径是用于建材领域,为制定赤泥大规模资源化利用的技术路线提供了一定的理论基础。
Resumo:
Measurement of antigen-specific T cell responses is an adjunctive parameter to evaluate protection induced by a previous Bordetella pertussis infection or vaccination. The assessment of T cell responses is technically complex and usually performed on fresh peripheral blood mononuclear cells (PBMC). The objective of this study was to identify simplified methods to assess pertussis specific T cell responses and verify if these assays could be performed using frozen/thawed (frozen) PBMC. Three read-outs to measure proliferation were compared: the fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) dilution test, the number of blast cells defined by physical parameters, and the incorporation of (3)H-thymidine. The results of pertussis-specific assays performed on fresh PBMC were compared to the results on frozen PBMC from the same donor. High concordance was obtained when the results of CFSE and blast read-outs were compared, an encouraging result since blast analysis allows the identification of proliferating cells and does not require any use of radioactive tracer as well as any staining. The results obtained using fresh and frozen PBMC from the same donor in the different T cell assays, including IFNγ and TNFα cytokine production, did not show significant differences, suggesting that a careful cryopreservation process of PBMC would not significantly influence T cell response evaluation. Adopting blast analysis and frozen PBMC, the possibility to test T cell responses is simplified and might be applied in population studies, providing for new instruments to better define correlates of protection still elusive in pertussis.
Resumo:
An investigation of the potential environmental and health impacts in the immediate aftermath of one of the largest coal ash spills in U.S. history at the Tennessee Valley Authority (TVA) Kingston coal-burning power plant has revealed three major findings. First the surface release of coal ash with high levels of toxic elements (As = 75 mg/kg; Hg = 150 microg/kg) and radioactivity (226Ra + 228Ra = 8 pCi/g) to the environment has the potential to generate resuspended ambient fine particles (< 10 microm) containing these toxics into the atmosphere that may pose a health risk to local communities. Second, leaching of contaminants from the coal ash caused contamination of surface waters in areas of restricted water exchange, but only trace levels were found in the downstream Emory and Clinch Rivers due to river dilution. Third, the accumulation of Hg- and As-rich coal ash in river sediments has the potential to have an impact on the ecological system in the downstream rivers by fish poisoning and methylmercury formation in anaerobic river sediments.
Resumo:
Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A.
Resumo:
The safe disposal of liquid wastes associated with oil and gas production in the United States is a major challenge given their large volumes and typically high levels of contaminants. In Pennsylvania, oil and gas wastewater is sometimes treated at brine treatment facilities and discharged to local streams. This study examined the water quality and isotopic compositions of discharged effluents, surface waters, and stream sediments associated with a treatment facility site in western Pennsylvania. The elevated levels of chloride and bromide, combined with the strontium, radium, oxygen, and hydrogen isotopic compositions of the effluents reflect the composition of Marcellus Shale produced waters. The discharge of the effluent from the treatment facility increased downstream concentrations of chloride and bromide above background levels. Barium and radium were substantially (>90%) reduced in the treated effluents compared to concentrations in Marcellus Shale produced waters. Nonetheless, (226)Ra levels in stream sediments (544-8759 Bq/kg) at the point of discharge were ~200 times greater than upstream and background sediments (22-44 Bq/kg) and above radioactive waste disposal threshold regulations, posing potential environmental risks of radium bioaccumulation in localized areas of shale gas wastewater disposal.
Resumo:
OBJECTIVE: The diagnosis of Alzheimer's disease (AD) remains difficult. Lack of diagnostic certainty or possible distress related to a positive result from diagnostic testing could limit the application of new testing technologies. The objective of this paper is to quantify respondents' preferences for obtaining AD diagnostic tests and to estimate the perceived value of AD test information. METHODS: Discrete-choice experiment and contingent-valuation questions were administered to respondents in Germany and the United Kingdom. Choice data were analyzed by using random-parameters logit. A probit model characterized respondents who were not willing to take a test. RESULTS: Most respondents indicated a positive value for AD diagnostic test information. Respondents who indicated an interest in testing preferred brain imaging without the use of radioactive markers. German respondents had relatively lower money-equivalent values for test features compared with respondents in the United Kingdom. CONCLUSIONS: Respondents preferred less invasive diagnostic procedures and tests with higher accuracy and expressed a willingness to pay up to €700 to receive a less invasive test with the highest accuracy.