934 resultados para RANDOM CONDUCTANCES
Resumo:
In this article, we study reliability measures such as geometric vitality function and conditional Shannon’s measures of uncertainty proposed by Ebrahimi (1996) and Sankaran and Gupta (1999), respectively, for the doubly (interval) truncated random variables. In survival analysis and reliability engineering, these measures play a significant role in studying the various characteristics of a system/component when it fails between two time points. The interrelationships among these uncertainty measures for various distributions are derived and proved characterization theorems arising out of them
Resumo:
In this paper, we study the relationship between the failure rate and the mean residual life of doubly truncated random variables. Accordingly, we develop characterizations for exponential, Pareto 11 and beta distributions. Further, we generalize the identities for fire Pearson and the exponential family of distributions given respectively in Nair and Sankaran (1991) and Consul (1995). Applications of these measures in file context of lengthbiased models are also explored
Resumo:
Nanocrystalline Fe–Ni thin films were prepared by partial crystallization of vapour deposited amorphous precursors. The microstructure was controlled by annealing the films at different temperatures. X-ray diffraction, transmission electron microscopy and energy dispersive x-ray spectroscopy investigations showed that the nanocrystalline phase was that of Fe–Ni. Grain growth was observed with an increase in the annealing temperature. X-ray photoelectron spectroscopy observations showed the presence of a native oxide layer on the surface of the films. Scanning tunnelling microscopy investigations support the biphasic nature of the nanocrystalline microstructure that consists of a crystalline phase along with an amorphous phase. Magnetic studies using a vibrating sample magnetometer show that coercivity has a strong dependence on grain size. This is attributed to the random magnetic anisotropy characteristic of the system. The observed coercivity dependence on the grain size is explained using a modified random anisotropy model
Resumo:
One comes across directions as the observations in a number of situations. The first inferential question that one should answer when dealing with such data is, “Are they isotropic or uniformly distributed?” The answer to this question goes back in history which we shall retrace a bit and provide an exact and approximate solution to this so-called “Pearson’s Random Walk” problem.
Resumo:
In many situations probability models are more realistic than deterministic models. Several phenomena occurring in physics are studied as random phenomena changing with time and space. Stochastic processes originated from the needs of physicists.Let X(t) be a random variable where t is a parameter assuming values from the set T. Then the collection of random variables {X(t), t ∈ T} is called a stochastic process. We denote the state of the process at time t by X(t) and the collection of all possible values X(t) can assume, is called state space
Resumo:
We have developed a technique called RISE (Random Image Structure Evolution), by which one may systematically sample continuous paths in a high-dimensional image space. A basic RISE sequence depicts the evolution of an object's image from a random field, along with the reverse sequence which depicts the transformation of this image back into randomness. The processing steps are designed to ensure that important low-level image attributes such as the frequency spectrum and luminance are held constant throughout a RISE sequence. Experiments based on the RISE paradigm can be used to address some key open issues in object perception. These include determining the neural substrates underlying object perception, the role of prior knowledge and expectation in object perception, and the developmental changes in object perception skills from infancy to adulthood.
Predicting random level and seasonality of hotel prices. A structural equation growth curve approach
Resumo:
This article examines the effect on price of different characteristics of holiday hotels in the sun-and-beach segment, under the hedonic function perspective. Monthly prices of the majority of hotels in the Spanish continental Mediterranean coast are gathered from May to October 1999 from the tour operator catalogues. Hedonic functions are specified as random-effect models and parametrized as structural equation models with two latent variables, a random peak season price and a random width of seasonal fluctuations. Characteristics of the hotel and the region where they are located are used as predictors of both latent variables. Besides hotel category, region, distance to the beach, availability of parking place and room equipment have an effect on peak price and also on seasonality. 3- star hotels have the highest seasonality and hotels located in the southern regions the lowest, which could be explained by a warmer climate in autumn
Resumo:
We analyze a finite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to find an inventory policy and a pricing strategy maximizing expected profit over the finite horizon. We show that when the demand model is additive, the profit-to-go functions are k-concave and hence an (s,S,p) policy is optimal. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period. For more general demand functions, i.e., multiplicative plus additive functions, we demonstrate that the profit-to-go function is not necessarily k-concave and an (s,S,p) policy is not necessarily optimal. We introduce a new concept, the symmetric k-concave functions and apply it to provide a characterization of the optimal policy.
Resumo:
We analyze an infinite horizon, single product, periodic review model in which pricing and production/inventory decisions are made simultaneously. Demands in different periods are identically distributed random variables that are independent of each other and their distributions depend on the product price. Pricing and ordering decisions are made at the beginning of each period and all shortages are backlogged. Ordering cost includes both a fixed cost and a variable cost proportional to the amount ordered. The objective is to maximize expected discounted, or expected average profit over the infinite planning horizon. We show that a stationary (s,S,p) policy is optimal for both the discounted and average profit models with general demand functions. In such a policy, the period inventory is managed based on the classical (s,S) policy and price is determined based on the inventory position at the beginning of each period.
Resumo:
We generalize a previous model of time-delayed reaction–diffusion fronts (Fort and Méndez 1999 Phys. Rev. Lett. 82 867) to allow for a bias in the microscopic random walk of particles or individuals. We also present a second model which takes the time order of events (diffusion and reproduction) into account. As an example, we apply them to the human invasion front across the USA in the 19th century. The corrections relative to the previous model are substantial. Our results are relevant to physical and biological systems with anisotropic fronts, including particle diffusion in disordered lattices, population invasions, the spread of epidemics, etc
Resumo:
Resumen tomado de la publicaci??n
Resumo:
A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independient of random motion, and intensities of reverses are defined by a particle's current direction. A soluton of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) have a so-called McKean representation via such processes. Commonly this system possesses traveling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed.This Paper realizes the McKean programme for the Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role.
Resumo:
One of the key aspects in 3D-image registration is the computation of the joint intensity histogram. We propose a new approach to compute this histogram using uniformly distributed random lines to sample stochastically the overlapping volume between two 3D-images. The intensity values are captured from the lines at evenly spaced positions, taking an initial random offset different for each line. This method provides us with an accurate, robust and fast mutual information-based registration. The interpolation effects are drastically reduced, due to the stochastic nature of the line generation, and the alignment process is also accelerated. The results obtained show a better performance of the introduced method than the classic computation of the joint histogram
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities
Resumo:
The author studies the error and complexity of the discrete random walk Monte Carlo technique for radiosity, using both the shooting and gathering methods. The author shows that the shooting method exhibits a lower complexity than the gathering one, and under some constraints, it has a linear complexity. This is an improvement over a previous result that pointed to an O(n log n) complexity. The author gives and compares three unbiased estimators for each method, and obtains closed forms and bounds for their variances. The author also bounds the expected value of the mean square error (MSE). Some of the results obtained are also shown