963 resultados para Non-commutative particles dynamics
Resumo:
We quantize a generalized version of the Schwinger model, where the two chiral sectors couples with different strengths to the U(1) gauge field. Starting from a theory which includes a generalized Wess-Zumino term, we obtain the equal time commutation relation for physical fields, both the singular and non-singular cases are considered. The photon propagators are also computed in their gauge dependent and invariant versions. © 1995 Springer-Verlag.
Resumo:
The mechanism of formation and growth of hydrous iron oxide (FeOOH) during the initial stages of forced hydrolyses of ferric chloride aqueous solution was studied by small angle X-ray scattering (SAXS). The effect of the hydrolysis temperature (60°C, 70°C and 80°C) and of the addition of urea on the formation of colloidal particles under isothermal conditions were investigated. Based on the experimental scattering functions in the Guinier range, we suggest the presence of elongated colloidal particles. The particle diameter and length, and their variation with time, were determined by fitting the form factor of prolate ellipsoids to the experimental scattering functions. We have assumed that our solutions are in a dilute state and that all colloidal particles are approximately of the same size. The colloidal particles have geometrical shapes similar to those of the subcrystals that build up the superstructure of β-FeOOH crystals, indicating that the formation of this hydrous iron oxide is governed by an aggregation process. Otherwise, the addition of urea hinders the growth and yields smaller particles, with a reduction in size greater than 50%. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.
Resumo:
We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the 'de Sitter group' in 4 + 1 dimensions, SO(5, 1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator.
Resumo:
The dynamics of small repulsive Bose-Einstein condensed vortex states of 85Rb atoms in a cylindrical traps with low angular momentum was studied. The time-dependent mean-field Gross-Pitaevskii equation was used for the study. The condensates collapsed and atoms ejected via explosion and a remnant condensate with a smaller number of atoms emerges that survived for a long time.
Resumo:
A numerical study of the non-oscillatory reheating mechanism in a quintessential inflation context shows that high reheating temperature can be achieved compared with the usual reheating mechanism in which particles are produced gravitationally. We find that even for a very small coupling between the inflaton field and a massless scalar field, the non-oscillatory reheating production of particles dominates over the gravitational production mechanism. © 2004 Published by Elsevier B.V.
Resumo:
Successful experiments in nonlinear vibrations have been carried out with cantilever beams under harmonic base excitation. A flexible slender cantilever has been chosen as a convenient structure to exhibit modal interactions, subharmonic, superharmonic and chaotic motions, and others interesting nonlinear phenomena. The tools employed to analyze the dynamics of the beam generally include frequency- and force-response curves. To produce force-response curves, one keeps the excitation frequency constant and slowly varies the excitation amplitude, on the other hand, to produce frequency-response curves, one keeps the excitation amplitude fixed and slowly varies the excitation frequency. However, keeping the excitation amplitude constant while varying the excitation frequency is a difficult task with an open-loop measurement system. In this paper, it is proposed a closed-loop monitor vibration system available with the electromagnetic shaker in order to keep the harmonic base excitation amplitude constant. This experimental setup constitutes a significant improvement to produce frequency-response curves and the advantages of this setup are evaluated in a case study. The beam is excited with a periodic base motion transverse to the axis of the beam near the third natural frequency. Modal interactions and two-period quasi-periodic motion are observed involving the first and the third modes. Frequency-response curves, phase space and Poincaré map are used to characterize the dynamics of the beam.
Resumo:
We present a simple mathematical model of a wind turbine supporting tower. Here, the wind excitation is considered to be a non-ideal power source. In such a consideration, there is interaction between the energy supply and the motion of the supporting structure. If power is not enough, the rotation of the generator may get stuck at a resonance frequency of the structure. This is a manifestation of the so-called Sommerfeld Effect. In this model, at first, only two degrees of freedom are considered, the horizontal motion of the upper tip of the tower, in the transverse direction to the wind, and the generator rotation. Next, we add another degree of freedom, the motion of a free rolling mass inside a chamber. Its impact with the walls of the chamber provides control of both the amplitude of the tower vibration and the width of the band of frequencies in which the Sommerfeld effect occur. Some numerical simulations are performed using the equations of motion of the models obtained via a Lagrangian approach.
Resumo:
We investigate the dissipative real-time evolution of the order parameter for the deconfining transition in the pure SU(2) gauge theory. The approach to equilibrium after a quench to temperatures well above the critical one is described by a Langevin equation. To fix completely the Markovian Langevin dynamics we choose the dissipation coefficient, that is a function of the temperature, guided by preliminary Monte Carlo simulations for various temperatures. Assuming a relationship between Monte Carlo time and real time, we estimate the delay in thermalization brought about by dissipation and noise. © 2007 The American Physical Society.
Resumo:
In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power, as that provided by a DC motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a non-ideal problem. In this work, we considerer two non-ideal problems analyzed by using numerical simulations. The existence of the Sommerfeld effect was verified, that is, the effect of getting stuck at resonance (energy imparted to the DC motor being used to excite large amplitude motions of the supporting structure). We considered two kinds of non-ideal problem: one related to the transverse vibrations of a shaft carrying two disks and another to a piezoceramic bar transducer powered by a vacuum tube generated by a non-ideal source Copyright © 2007 by ASME.
Resumo:
We discuss dynamics of a vibro-impact system consisting of a cart with an piecewise-linear restoring force, which vibrates under driving by a source with limited power supply. From the point of view of dynamical systems, vibro-impact systems exhibit a rich variety of phenomena, particularly chaotic motion. In our analyzes, we use bifurcation diagrams, basins of attractions, identifying several non-linear phenomena, such as chaotic regimes, crises, intermittent mechanisms, and coexistence of attractors with complex basins of attraction. © 2009 by ASME.
Resumo:
This paper presents a nonlinear dynamic analysis of a flexible portal frame subjected to support excitation, which is provided by an electro-dynamical shaker. The problem is reduced to a mathematical model of four degrees of freedom and the equations of motion are derived via Lagrangian formulation. The main goal of this study is to investigate the dynamic interactions between a flexible portal frame and a non-ideal support excitation. The numerical analysis shows a complex behavior of the system, which can be observed by phase spaces, Poincaŕ sections and bifurcation diagrams. © 2012 American Institute of Physics.
Resumo:
Includes bibliography
Resumo:
In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
Includes bibliography