Galilean covariance and non-relativistic Bhabha equations


Autoria(s): De Montigny, M.; Khanna, F. C.; Santana, A. E.; Santos, E. S.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

27/05/2014

27/05/2014

26/10/2001

Resumo

We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the 'de Sitter group' in 4 + 1 dimensions, SO(5, 1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator.

Formato

8901-8917

Identificador

http://dx.doi.org/10.1088/0305-4470/34/42/313

Journal of Physics A: Mathematical and General, v. 34, n. 42, p. 8901-8917, 2001.

0305-4470

http://hdl.handle.net/11449/66598

10.1088/0305-4470/34/42/313

WOS:000172118600017

2-s2.0-0035955591

Idioma(s)

eng

Relação

Journal of Physics A: Mathematical and General

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article