Galilean covariance and non-relativistic Bhabha equations
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
27/05/2014
27/05/2014
26/10/2001
|
Resumo |
We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the 'de Sitter group' in 4 + 1 dimensions, SO(5, 1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator. |
Formato |
8901-8917 |
Identificador |
http://dx.doi.org/10.1088/0305-4470/34/42/313 Journal of Physics A: Mathematical and General, v. 34, n. 42, p. 8901-8917, 2001. 0305-4470 http://hdl.handle.net/11449/66598 10.1088/0305-4470/34/42/313 WOS:000172118600017 2-s2.0-0035955591 |
Idioma(s) |
eng |
Relação |
Journal of Physics A: Mathematical and General |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |