950 resultados para Non-Linear Analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data was analyzed on development of the solanaceen fruit crop Cape gooseberry to evaluate how well a classical thermal time model could describe node appearance in different environments. The data used in the analysis were obtained from experiments conducted in Colombia in open fields and greenhouse condition at two locations with different climate. An empirical, non linear segmented model was used to estimate the base temperature and to parameterize the model for simulation of node appearance vs. time. The base temperature (Tb) used to calculate the thermal time (TT, ºCd) for node appearance was estimated to be 6.29 ºC. The slope of the first linear segment was 0.023 nodes per TT and 0.008 for the second linear segment. The time at which the slope of node apperance changed was 1039.5 ºCd after transplanting, determined from a statistical analysis of model for the first segment. When these coefficients were used to predict node appearance at all locations, the model successfully fit the observed data (RSME=2.1), especially for the first segment where node appearance was more homogeneous than the second segment. More nodes were produced by plants grown under greenhouse conditions and minimum and maximum rates of node appearance rates were also higher.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tässä työssä tutkitaan ohjelmistoarkkitehtuurisuunnitteluominaisuuksien vaikutusta erään client-server –arkkitehtuuriin perustuvan mobiilipalvelusovelluksen suunnittelu- ja toteutusaikaan. Kyseinen tutkimus perustuu reaalielämän projektiin, jonka kvalitatiivinen analyysi paljasti arkkitehtuurikompponenttien välisten kytkentöjen merkittävästi vaikuttavan projektin työmäärään. Työn päätavoite oli kvantitatiivisesti tutkia yllä mainitun havainnon oikeellisuus. Tavoitteen saavuttamiseksi suunniteltiin ohjelmistoarkkitehtuurisuunnittelun mittaristo kuvaamaan kyseisen järjestelmän alijärjestelmien arkkitehtuuria ja luotiin kaksi suunniteltua mittaristoa käyttävää, työmäärää (komponentin suunnittelu-, toteutus- ja testausaikojen summa) arvioivaa mallia, joista toinen on lineaarinen ja toinen epälineaarinen. Näiden mallien kertoimet sovitettiin optimoimalla niiden arvot epälineaarista gloobaalioptimointimenetelmää, differentiaalievoluutioalgoritmia, käyttäen, niin että mallien antamat arvot vastasivat parhaiten mitattua työmäärää sekä kaikilla ominaisuuksilla eli attribuuteilla että vain osalla niistä (yksi jätettiin vuorotellen pois). Kun arkkitehtuurikompenttien väliset kytkennät jätettiin malleista pois, mitattujen ja arvoitujen työmäärien välinen ero (ilmaistuna virheenä) kasvoi eräässä tapauksessa 367 % entisestä tarkoittaen sitä, että näin muodostettu malli vastasi toteutusaikoja huonosti annetulla ainestolla. Tämä oli suurin havaitu virhe kaikkien poisjätettyjen ominaisuuksien kesken. Saadun tuloksen perusteella päätettiin, että kyseisen järjestelmän toteutusajat ovat vahvasti riippuvaisia kytkentöjen määrästä, ja näin ollen kytkentöjen määrä oli mitä todennäköisemmin kaikista tärkein työmäärään vaikuttava tekijä tutkitun järjestelmän arkkitehtuurisuunnittelussa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Työn päätavoitteena oli selvittää hinnan ja kilpailutilanteen vaikutusta matkaviestinnän diffuusioon. Työn empiirinen osuus tarkasteli matkapuhelinliittymien hinnan vaikutusta liittymien diffuusioon sekä sitä, miten alan kilpailu on vaikuttanut matkaviestinnän hintatasoon. Työssä analysoitiin myös matkaviestinnän kilpailutilannetta Suomen markkinoilla. Tutkimuksen empiirinen aineisto kerättiin toissijaisista lähteistä, esimerkiksi EMC-tietokannasta. Tutkimus oli luonteeltaan kvantitatiivinen.Empiirisessä osassa käytetyt mallit oli muodostettu aikaisempien tutkimuksien perusteella. Regressioanalyysiä käytettiin arvioitaessa hinnan vaikutusta diffuusionopeuteen ja mahdollisten omaksujien määrään. Regressioanalyysissä sovellettiin ei-lineaarista mallia.Tutkimustulokset osoittivat, että tasaisesti laskevilla matkapuhelinliittymien sekä matkapuhelimien hinnoilla ei ole merkittävää vaikutusta matkaviestinnän diffuusioon. Myöskään kilpailutilanne ei ole vaikuttanut paljon matkaviestinnän yleiseen hintatasoon. Työn tulosten perusteella voitiin antaa myös muutamia toimenpide-ehdotuksia jatkotutkimuksia varten.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract Purpose- There is a lack of studies on tourism demand forecasting that use non-linear models. The aim of this paper is to introduce consumer expectations in time-series models in order to analyse their usefulness to forecast tourism demand. Design/methodology/approach- The paper focuses on forecasting tourism demand in Catalonia for the four main visitor markets (France, the UK, Germany and Italy) combining qualitative information with quantitative models: autoregressive (AR), autoregressive integrated moving average (ARIMA), self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. The forecasting performance of the different models is evaluated for different time horizons (one, two, three, six and 12 months). Findings- Although some differences are found between the results obtained for the different countries, when comparing the forecasting accuracy of the different techniques, ARIMA and Markov switching regime models outperform the rest of the models. In all cases, forecasts of arrivals show lower root mean square errors (RMSE) than forecasts of overnight stays. It is found that models with consumer expectations do not outperform benchmark models. These results are extensive to all time horizons analysed. Research limitations/implications- This study encourages the use of qualitative information and more advanced econometric techniques in order to improve tourism demand forecasting. Originality/value- This is the first study on tourism demand focusing specifically on Catalonia. To date, there have been no studies on tourism demand forecasting that use non-linear models such as self-exciting threshold autoregressions (SETAR) and Markov switching regime (MKTAR) models. This paper fills this gap and analyses forecasting performance at a regional level. Keywords Tourism, Forecasting, Consumers, Spain, Demand management Paper type Research paper

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Työssä on tutkittu elementtimenetelmän avulla kylmämuovattujen nelikulmaisten putkipalkkien materiaalimallin kehittämistä ja putkipalkkien X-liitosten jäykkyyden ja äärikestävyyden määrittämistä. Työn tavoitteena on tutkia kylmämuovauksen vaikutuksia putkipalkkiprofiilin materiaaliominaisuuksiin materiaalikokeiden ja elementtianalyysien avulla sekä kehittää putkipalkille anisotrooppista materiaalimallia. Työssä määritettyjä materiaalimalleja on sovellettu X-liitosten elementtimalleihin, joiden käyttäytymistä on verrattu äärikestävyyskokeiden tuloksiin. Tutkimuksen perusteella Eurocode 3:n mitoitusohjeita voidaan turvallisesti soveltaa kylmämuovattujen putkipalkkien X-liitosten laskennassa. Työssä tehtyjen materiaalikokeiden ja elementtianalyysien perusteella materiaalin anisotrooppisuuden vaikutus liitoksen kestävyyteen on vähäistä, ja putkipalkin pituussuuntaista materiaalimallia voidaan soveltaa myös kehäsuuntaisille materiaaliominaisuuksille. Materiaalikokeiden simulointi osoittaa, että elementtimenetelmää voidaan käyttää materiaalimallin määrittämisen apuvälineenä.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper analyzes applications of cumulant analysis in speech processing. A special focus is made on different second-order statistics. A dominant role is played by an integral representation for cumulants by means of integrals involving cyclic products of kernels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Already in ancient Greece, Hippocrates postulated that disease showed a seasonal pattern characterised by excess winter mortality. Since then, several studies have confirmed this finding, and it was generally accepted that the increase in winter mortality was mostly due to respiratory infections and seasonal influenza. More recently, it was shown that cardiovascular disease (CVD) mortality also displayed such seasonality, and that the magnitude of the seasonal effect increased from the poles to the equator. The recent study by Yang et al assessed CVD mortality attributable to ambient temperature using daily data from 15 cities in China for years 2007-2013, including nearly two million CVD deaths. A high temperature variability between and within cities can be observed (figure 1). They used sophisticated statistical methodology to account for the complex temperature-mortality relationship; first, distributed lag non-linear models combined with quasi-Poisson regression to obtain city-specific estimates, taking into account temperature, relative humidity and atmospheric pressure; then, a meta-analysis to obtain the pooled estimates. The results confirm the winter excess mortality as reported by the Eurowinter3 and other4 groups, but they show that the magnitude of ambient temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The primary objective is to identify the critical factors that have a natural impact on the performance measurement system. It is important to make correct decisions related to measurement systems, which are based on the complex business environment. The performance measurement system is combined with a very complex non-linear factor. The Six Sigma methodology is seen as one potential approach at every organisational level. It will be linked to the performance and financial measurement as well as to the analytical thinking on which the viewpoint of management depends. The complex systems are connected to the customer relationship study. As the primary throughput can be seen in a new well-defined performance measurement structure that will also be facilitated as will an analytical multifactor system. These critical factors should also be seen as a business innovation opportunity at the same time. This master's thesis has been divided into two different theoretical parts. The empirical part consists of both action-oriented and constructive research approaches with an empirical case study. The secondary objective is to seek a competitive advantage factor with a new analytical tool and the Six Sigma thinking. Process and product capabilities will be linked to the contribution of complex system. These critical barriers will be identified by the performance measuring system. The secondary throughput can be recognised as the product and the process cost efficiencies which throughputs are achieved with an advantage of management. The performance measurement potential is related to the different productivity analysis. Productivity can be seen as one essential part of the competitive advantage factor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across studies. The objective of this research is to develop a cutpoint conversion system that standardizes minutes of MVPA for six different sets of published cutpoints. DESIGN: Secondary data analysis. METHODS: Data from the International Children's Accelerometer Database (ICAD; Spring 2014) consisting of 43,112 Actigraph accelerometer data files from 21 worldwide studies (children 3-18 years, 61.5% female) were used to develop prediction equations for six sets of published cutpoints. Linear and non-linear modeling, using a leave one out cross-validation technique, was employed to develop equations to convert MVPA from one set of cutpoints into another. Bland Altman plots illustrate the agreement between actual MVPA and predicted MVPA values. RESULTS: Across the total sample, mean MVPA ranged from 29.7MVPAmind(-1) (Puyau) to 126.1MVPAmind(-1) (Freedson 3 METs). Across conversion equations, median absolute percent error was 12.6% (range: 1.3 to 30.1) and the proportion of variance explained ranged from 66.7% to 99.8%. Mean difference for the best performing prediction equation (VC from EV) was -0.110mind(-1) (limits of agreement (LOA), -2.623 to 2.402). The mean difference for the worst performing prediction equation (FR3 from PY) was 34.76mind(-1) (LOA, -60.392 to 129.910). CONCLUSIONS: For six different sets of published cutpoints, the use of this equating system can assist individuals attempting to synthesize the growing body of literature on Actigraph, accelerometry-derived MVPA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the main problems in quantitative analysis of complex samples by x-ray fluorescence is related to interelemental (or matrix) effects. These effects appear as a result of interactions among sample elements, affecting the x-ray emission intensity in a non-linear manner. Basically, two main effects occur; intensity absorption and enhancement. The combination of these effects can lead to serious problems. Many studies have been carried out proposing mathematical methods to correct for these effects. Basic concepts and the main correction methods are discussed here.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dynamic mechanical analysis (DMA) is widely used in materials characterization. In this work, we briefly introduce the main concepts related to this technique such as, linear and non-linear viscoelasticity, relaxation time, response of material when it is submitted to a sinusoidal or other periodic stress. Moreover, the main applications of this technique in polymers and polymer blends are also presented. The discussion includes: phase behavior, crystallization; spectrum of relaxation as a function of frequency or temperature; correlation between the material damping and its acoustic and mechanical properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A procedure for determining of the isotope ratio 235U/238U in UF6 samples was established using a quadrupole mass spectrometer with ionization by electron impact. The following items were optimized in the spectrometer: the parameters in the ion source that provided the most intense peak, with good shape, for the most abundant isotope; the resolution that reduced the non linear effects and the number of analytical cycles that reduced the uncertainty in the results. The measurement process was characterized with respect to the effects of mass discrimination, linearity and memory effect.