935 resultados para Non linear systems of ordinary differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchronization in nonlinear dynamical systems, especially in chaotic systems, is field of research in several areas of knowledge, such as Mechanical Engineering and Electrical Engineering, Biology, Physics, among others. In simple terms, two systems are synchronized if after a certain time, they have similar behavior or occurring at the same time. The sound and image in a film is an example of this phenomenon in our daily lives. The studies of synchronization include studies of continuous dynamic systems, governed by differential equations or studies of discrete time dynamical systems, also called maps. Maps correspond, in general, discretizations of differential equations and are widely used to model physical systems, mainly due to its ease of computational. It is enough to make iterations from given initial conditions for knowing the trajectories of system. This completion of course work based on the study of the map called ”Zaslavksy Web Map”. The Zaslavksy Web Map is a result of the combination of the movements of a particle in a constant magnetic field and a wave electrostatic propagating perpendicular to the magnetic field. Apart from interest in the particularities of this map, there was objective the deepening of concepts of nonlinear dynamics, as equilibrium points, linear stability, stability non-linear, bifurcation and chaos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role played by the attainable set of a differential inclusion, in the study of dynamic control systems and fuzzy differential equations, is widely acknowledged. A procedure for estimating the attainable set is rather complicated compared to the numerical methods for differential equations. This article addresses an alternative approach, based on an optimal control tool, to obtain a description of the attainable sets of differential inclusions. In particular, we obtain an exact delineation of the attainable set for a large class of nonlinear differential inclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using the theory of semigroups of growth α, we discuss the existence of mild solutions for a class of abstract neutral functional differential equations. A concrete application to partial neutral functional differential equations is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In epidemiology, the basic reproduction number R-0 is usually defined as the average number of new infections caused by a single infective individual introduced into a completely susceptible population. According to this definition. R-0 is related to the initial stage of the spreading of a contagious disease. However, from epidemiological models based on ordinary differential equations (ODE), R-0 is commonly derived from a linear stability analysis and interpreted as a bifurcation parameter: typically, when R-0 >1, the contagious disease tends to persist in the population because the endemic stationary solution is asymptotically stable: when R-0 <1, the corresponding pathogen tends to naturally disappear because the disease-free stationary solution is asymptotically stable. Here we intend to answer the following question: Do these two different approaches for calculating R-0 give the same numerical values? In other words, is the number of secondary infections caused by a unique sick individual equal to the threshold obtained from stability analysis of steady states of ODE? For finding the answer, we use a susceptibleinfective-recovered (SIR) model described in terms of ODE and also in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. The values of R-0 obtained from both approaches are compared, showing good agreement. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma density evolution in sawtooth regime on the Tore Supra tokamak is analyzed. The density is measured using fast-sweeping X-mode reflectometry which allows tomographic reconstructions. There is evidence that density is governed by the perpendicular electric flows, while temperature evolution is dominated by parallel diffusion. Postcursor oscillations sometimes lead to the formation of a density plateau, which is explained in terms of convection cells associated with the kink mode. A crescent-shaped density structure located inside q = 1 is often visible just after the crash and indicates that some part of the density withstands the crash. 3D full MHD nonlinear simulations with the code XTOR-2F recover this structure and show that it arises from the perpendicular flows emerging from the reconnection layer. The proportion of density reinjected inside the q = 1 surface is determined, and the implications in terms of helium ash transport are discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4766893]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a class of involutive systems of n smooth vector fields on the n + 1 dimensional torus. We obtain a complete characterization for the global solvability of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a periodic averaging theorem for generalized ordinary differential equations and show that averaging theorems for ordinary differential equations with impulses and for dynamic equations on time scales follow easily from this general theorem. We also present a periodic averaging theorem for a large class of retarded equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce a new class of abstract integral equations which enables us to study in a unified manner several different types of differential equations. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

English: The assessment of safety in existing bridges and viaducts led the Ministry of Public Works of the Netherlands to finance a specific campaing aimed at the study of the response of the elements of these infrastructures. Therefore, this activity is focused on the investigation of the behaviour of reinforced concrete slabs under concentrated loads, adopting finite element modeling and comparison with experimental results. These elements are characterized by shear behaviour and crisi, whose modeling is, from a computational point of view, a hard challeng, due to the brittle behavior combined with three-dimensional effects. The numerical modeling of the failure is studied through Sequentially Linear Analysis (SLA), an alternative Finite Element method, with respect to traditional incremental and iterative approaches. The comparison between the two different numerical techniques represents one of the first works and comparisons in a three-dimensional environment. It's carried out adopting one of the experimental test executed on reinforced concrete slabs as well. The advantage of the SLA is to avoid the well known problems of convergence of typical non-linear analysis, by directly specifying a damage increment, in terms of reduction of stiffness and resistance in particular finite element, instead of load or displacement increasing on the whole structure . For the first time, particular attention has been paid to specific aspects of the slabs, like an accurate constraints modeling and sensitivity of the solution with respect to the mesh density. This detailed analysis with respect to the main parameters proofed a strong influence of the tensile fracture energy, mesh density and chosen model on the solution in terms of force-displacement diagram, distribution of the crack patterns and shear failure mode. The SLA showed a great potential, but it requires a further developments for what regards two aspects of modeling: load conditions (constant and proportional loads) and softening behaviour of brittle materials (like concrete) in the three-dimensional field, in order to widen its horizons in these new contexts of study.