905 resultados para Methods : Statistical


Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classi cation: 62N01, 62N05, 62P10, 92D10, 92D30.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of new, health supporting food of high quality and the optimization of food technological processes today require the application of statistical methods of experimental design. The principles and steps of statistical planning and evaluation of experiments will be explained. By example of the development of a gluten-free rusk (zwieback), which is enriched by roughage compounds the application of a simplex-centroid mixture design will be shown. The results will be illustrated by different graphics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many practical routing algorithms are heuristic, adhoc and centralized, rendering generic and optimal path configurations difficult to obtain. Here we study a scenario whereby selected nodes in a given network communicate with fixed routers and employ statistical physics methods to obtain optimal routing solutions subject to a generic cost. A distributive message-passing algorithm capable of optimizing the path configuration in real instances is devised, based on the analytical derivation, and is greatly simplified by expanding the cost function around the optimized flow. Good algorithmic convergence is observed in most of the parameter regimes. By applying the algorithm, we study and compare the pros and cons of balanced traffic configurations to that of consolidated traffic, which provides important implications to practical communication and transportation networks. Interesting macroscopic phenomena are observed from the optimized states as an interplay between the communication density and the cost functions used. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most pressing demands on electrophysiology applied to the diagnosis of epilepsy is the non-invasive localization of the neuronal generators responsible for brain electrical and magnetic fields (the so-called inverse problem). These neuronal generators produce primary currents in the brain, which together with passive currents give rise to the EEG signal. Unfortunately, the signal we measure on the scalp surface doesn't directly indicate the location of the active neuronal assemblies. This is the expression of the ambiguity of the underlying static electromagnetic inverse problem, partly due to the relatively limited number of independent measures available. A given electric potential distribution recorded at the scalp can be explained by the activity of infinite different configurations of intracranial sources. In contrast, the forward problem, which consists of computing the potential field at the scalp from known source locations and strengths with known geometry and conductivity properties of the brain and its layers (CSF/meninges, skin and skull), i.e. the head model, has a unique solution. The head models vary from the computationally simpler spherical models (three or four concentric spheres) to the realistic models based on the segmentation of anatomical images obtained using magnetic resonance imaging (MRI). Realistic models – computationally intensive and difficult to implement – can separate different tissues of the head and account for the convoluted geometry of the brain and the significant inter-individual variability. In real-life applications, if the assumptions of the statistical, anatomical or functional properties of the signal and the volume in which it is generated are meaningful, a true three-dimensional tomographic representation of sources of brain electrical activity is possible in spite of the ‘ill-posed’ nature of the inverse problem (Michel et al., 2004). The techniques used to achieve this are now referred to as electrical source imaging (ESI) or magnetic source imaging (MSI). The first issue to influence reconstruction accuracy is spatial sampling, i.e. the number of EEG electrodes. It has been shown that this relationship is not linear, reaching a plateau at about 128 electrodes, provided spatial distribution is uniform. The second factor is related to the different properties of the source localization strategies used with respect to the hypothesized source configuration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative post-translational modifications (oxPTMs) can alter the function of proteins, and are important in the redox regulation of cell behaviour. The most informative technique to detect and locate oxPTMs within proteins is mass spectrometry (MS). However, proteomic MS data are usually searched against theoretical databases using statistical search engines, and the occurrence of unspecified or multiple modifications, or other unexpected features, can lead to failure to detect the modifications and erroneous identifications of oxPTMs. We have developed a new approach for mining data from accurate mass instruments that allows multiple modifications to be examined. Accurate mass extracted ion chromatograms (XIC) for specific reporter ions from peptides containing oxPTMs were generated from standard LC-MSMS data acquired on a rapid-scanning high-resolution mass spectrometer (ABSciex 5600 Triple TOF). The method was tested using proteins from human plasma or isolated LDL. A variety of modifications including chlorotyrosine, nitrotyrosine, kynurenine, oxidation of lysine, and oxidized phospholipid adducts were detected. For example, the use of a reporter ion at 184.074 Da/e, corresponding to phosphocholine, was used to identify for the first time intact oxidized phosphatidylcholine adducts on LDL. In all cases the modifications were confirmed by manual sequencing. ApoB-100 containing oxidized lipid adducts was detected even in healthy human samples, as well as LDL from patients with chronic kidney disease. The accurate mass XIC method gave a lower false positive rate than normal database searching using statistical search engines, and identified more oxidatively modified peptides. A major advantage was that additional modifications could be searched after data collection, and multiple modifications on a single peptide identified. The oxPTMs present on albumin and ApoB-100 have potential as indicators of oxidative damage in ageing or inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Bázel–2. tőkeegyezmény bevezetését követően a bankok és hitelintézetek Magyarországon is megkezdték saját belső minősítő rendszereik felépítését, melyek karbantartása és fejlesztése folyamatos feladat. A szerző arra a kérdésre keres választ, hogy lehetséges-e a csőd-előrejelző modellek előre jelző képességét növelni a hagyományos matematikai-statisztikai módszerek alkalmazásával oly módon, hogy a modellekbe a pénzügyi mutatószámok időbeli változásának mértékét is beépítjük. Az empirikus kutatási eredmények arra engednek következtetni, hogy a hazai vállalkozások pénzügyi mutatószámainak időbeli alakulása fontos információt hordoz a vállalkozás jövőbeli fizetőképességéről, mivel azok felhasználása jelentősen növeli a csődmodellek előre jelző képességét. A szerző azt is megvizsgálja, hogy javítja-e a megfigyelések szélsőségesen magas vagy alacsony értékeinek modellezés előtti korrekciója a modellek klasszifikációs teljesítményét. ______ Banks and lenders in Hungary also began, after the introduction of the Basel 2 capital agreement, to build up their internal rating systems, whose maintenance and development are a continuing task. The author explores whether it is possible to increase the predictive capacity of business-failure forecasting models by traditional mathematical-cum-statistical means in such a way that they incorporate the measure of change in the financial indicators over time. Empirical findings suggest that the temporal development of the financial indicators of firms in Hungary carries important information about future ability to pay, since the predictive capacity of bankruptcy forecasting models is greatly increased by using such indicators. The author also examines whether the classification performance of the models can be improved by correcting for extremely high or low values before modelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present dissertation was to evaluate the internal validity of symptoms of four common anxiety disorders included in the Diagnostic and Statistical Manual of Mental Disorders fourth edition (text revision) (DSM-IV-TR; American Psychiatric Association, 2000), namely, separation anxiety disorder (SAD), social phobia (SOP), specific phobia (SP), and generalized anxiety disorder (GAD), in a sample of 625 youth (ages 6 to 17 years) referred to an anxiety disorders clinic and 479 parents. Confirmatory factor analyses (CFAs) were conducted on the dichotomous items of the SAD, SOP, SP, and GAD sections of the youth and parent versions of the Anxiety Disorders Interview Schedule for DSM-IV (ADIS-IV: C/P; Silverman & Albano, 1996) to test and compare a number of factor models including a factor model based on the DSM. Contrary to predictions, findings from CFAs showed that a correlated model with five factors of SAD, SOP, SP, GAD worry, and GAD somatic distress, provided the best fit of the youth data as well as the parent data. Multiple group CFAs supported the metric invariance of the correlated five factor model across boys and girls. Thus, the present study’s finding supports the internal validity of DSM-IV SAD, SOP, and SP, but raises doubt regarding the internal validity of GAD.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adverse health effects of long-term exposure to lead are well established, with major uptake into the human body occurring mainly through oral ingestion by young children. Lead-based paint was frequently used in homes built before 1978, particularly in inner-city areas. Minority populations experience the effects of lead poisoning disproportionately. ^ Lead-based paint abatement is costly. In the United States, residents of about 400,000 homes, occupied by 900,000 young children, lack the means to correct lead-based paint hazards. The magnitude of this problem demands research on affordable methods of hazard control. One method is encapsulation, defined as any covering or coating that acts as a permanent barrier between the lead-based paint surface and the environment. ^ Two encapsulants were tested for reliability and effective life span through an accelerated lifetime experiment that applied stresses exceeding those encountered under normal use conditions. The resulting time-to-failure data were used to extrapolate the failure time under conditions of normal use. Statistical analysis and models of the test data allow forecasting of long-term reliability relative to the 20-year encapsulation requirement. Typical housing material specimens simulating walls and doors coated with lead-based paint were overstressed before encapsulation. A second, un-aged set was also tested. Specimens were monitored after the stress test with a surface chemical testing pad to identify the presence of lead breaking through the encapsulant. ^ Graphical analysis proposed by Shapiro and Meeker and the general log-linear model developed by Cox were used to obtain results. Findings for the 80% reliability time to failure varied, with close to 21 years of life under normal use conditions for encapsulant A. The application of product A on the aged gypsum and aged wood substrates yielded slightly lower times. Encapsulant B had an 80% reliable life of 19.78 years. ^ This study reveals that encapsulation technologies can offer safe and effective control of lead-based paint hazards and may be less expensive than other options. The U.S. Department of Health and Human Services and the CDC are committed to eliminating childhood lead poisoning by 2010. This ambitious target is feasible, provided there is an efficient application of innovative technology, a goal to which this study aims to contribute. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gene-based tests of association are frequently applied to common SNPs (MAF>5%) as an alternative to single-marker tests. In this analysis we conduct a variety of simulation studies applied to five popular gene-based tests investigating general trends related to their performance in realistic situations. In particular, we focus on the impact of non-causal SNPs and a variety of LD structures on the behavior of these tests. Ultimately, we find that non-causal SNPs can significantly impact the power of all gene-based tests. On average, we find that the “noise” from 6–12 non-causal SNPs will cancel out the “signal” of one causal SNP across five popular gene-based tests. Furthermore, we find complex and differing behavior of the methods in the presence of LD within and between non-causal and causal SNPs. Ultimately, better approaches for a priori prioritization of potentially causal SNPs (e.g., predicting functionality of non-synonymous SNPs), application of these methods to sequenced or fully imputed datasets, and limited use of window-based methods for assigning inter-genic SNPs to genes will improve power. However, significant power loss from non-causal SNPs may remain unless alternative statistical approaches robust to the inclusion of non-causal SNPs are developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research endeavors on spoken dialogue systems in the 1990s and 2000s have led to the deployment of commercial spoken dialogue systems (SDS) in microdomains such as customer service automation, reservation/booking and question answering systems. Recent research in SDS has been focused on the development of applications in different domains (e.g. virtual counseling, personal coaches, social companions) which requires more sophistication than the previous generation of commercial SDS. The focus of this research project is the delivery of behavior change interventions based on the brief intervention counseling style via spoken dialogue systems. ^ Brief interventions (BI) are evidence-based, short, well structured, one-on-one counseling sessions. Many challenges are involved in delivering BIs to people in need, such as finding the time to administer them in busy doctors' offices, obtaining the extra training that helps staff become comfortable providing these interventions, and managing the cost of delivering the interventions. Fortunately, recent developments in spoken dialogue systems make the development of systems that can deliver brief interventions possible. ^ The overall objective of this research is to develop a data-driven, adaptable dialogue system for brief interventions for problematic drinking behavior, based on reinforcement learning methods. The implications of this research project includes, but are not limited to, assessing the feasibility of delivering structured brief health interventions with a data-driven spoken dialogue system. Furthermore, while the experimental system focuses on harmful alcohol drinking as a target behavior in this project, the produced knowledge and experience may also lead to implementation of similarly structured health interventions and assessments other than the alcohol domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning approaches. ^ In addition to designing a dialog system, the semantic and emotional meanings of user utterances have high impact on interaction. To perform domain specific reasoning and recognize concepts in user utterances, a named-entity recognizer and an ontology are designed and evaluated. To understand affective information conveyed through text, lexicons and sentiment analysis module are developed and tested.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)] that the critical behavior of the random-field Ising model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper taming of the large scaling corrections of the model by applying a combined approach of various techniques, coming from the zero-and positive-temperature toolboxes of statistical physics. In the present contribution we provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present an extension of the quotients method that allows us to obtain estimates of the critical exponent a of the specific heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system and the algorithmic aspects of the maximum-flow algorithm used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis introduces two related lines of study on classification of hyperspectral images with nonlinear methods. First, it describes a quantitative and systematic evaluation, by the author, of each major component in a pipeline for classifying hyperspectral images (HSI) developed earlier in a joint collaboration [23]. The pipeline, with novel use of nonlinear classification methods, has reached beyond the state of the art in classification accuracy on commonly used benchmarking HSI data [6], [13]. More importantly, it provides a clutter map, with respect to a predetermined set of classes, toward the real application situations where the image pixels not necessarily fall into a predetermined set of classes to be identified, detected or classified with.

The particular components evaluated are a) band selection with band-wise entropy spread, b) feature transformation with spatial filters and spectral expansion with derivatives c) graph spectral transformation via locally linear embedding for dimension reduction, and d) statistical ensemble for clutter detection. The quantitative evaluation of the pipeline verifies that these components are indispensable to high-accuracy classification.

Secondly, the work extends the HSI classification pipeline with a single HSI data cube to multiple HSI data cubes. Each cube, with feature variation, is to be classified of multiple classes. The main challenge is deriving the cube-wise classification from pixel-wise classification. The thesis presents the initial attempt to circumvent it, and discuss the potential for further improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To demonstrate the application of causal inference methods to observational data in the obstetrics and gynecology field, particularly causal modeling and semi-parametric estimation. BACKGROUND: Human immunodeficiency virus (HIV)-positive women are at increased risk for cervical cancer and its treatable precursors. Determining whether potential risk factors such as hormonal contraception are true causes is critical for informing public health strategies as longevity increases among HIV-positive women in developing countries. METHODS: We developed a causal model of the factors related to combined oral contraceptive (COC) use and cervical intraepithelial neoplasia 2 or greater (CIN2+) and modified the model to fit the observed data, drawn from women in a cervical cancer screening program at HIV clinics in Kenya. Assumptions required for substantiation of a causal relationship were assessed. We estimated the population-level association using semi-parametric methods: g-computation, inverse probability of treatment weighting, and targeted maximum likelihood estimation. RESULTS: We identified 2 plausible causal paths from COC use to CIN2+: via HPV infection and via increased disease progression. Study data enabled estimation of the latter only with strong assumptions of no unmeasured confounding. Of 2,519 women under 50 screened per protocol, 219 (8.7%) were diagnosed with CIN2+. Marginal modeling suggested a 2.9% (95% confidence interval 0.1%, 6.9%) increase in prevalence of CIN2+ if all women under 50 were exposed to COC; the significance of this association was sensitive to method of estimation and exposure misclassification. CONCLUSION: Use of causal modeling enabled clear representation of the causal relationship of interest and the assumptions required to estimate that relationship from the observed data. Semi-parametric estimation methods provided flexibility and reduced reliance on correct model form. Although selected results suggest an increased prevalence of CIN2+ associated with COC, evidence is insufficient to conclude causality. Priority areas for future studies to better satisfy causal criteria are identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.