Augmented Mixed Models For Clustered Proportion Data.


Autoria(s): Bandyopadhyay, Dipankar; Galvis, Diana M; Lachos, Victor H
Contribuinte(s)

UNIVERSIDADE DE ESTADUAL DE CAMPINAS

Data(s)

01/12/2014

27/11/2015

27/11/2015

Resumo

Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.

Identificador

Statistical Methods In Medical Research. , 2014-Dec.

1477-0334

10.1177/0962280214561093

http://www.ncbi.nlm.nih.gov/pubmed/25491718

http://repositorio.unicamp.br/jspui/handle/REPOSIP/201917

25491718

Idioma(s)

eng

Relação

Statistical Methods In Medical Research

Stat Methods Med Res

Direitos

fechado

© The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Fonte

PubMed

Palavras-Chave #Bayesian #Kullback-leibler Divergence #Augment #Dispersion Models #Periodontal Disease #Proportion Data
Tipo

Artigo de periódico