943 resultados para Mesoporous bioactive glasses
Resumo:
Two new metabolites, ethyl 2,4-dihydroxy-5,6-dimethylbenzoate (1) and phomopsilactone (2) were isolated from Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. Their structures were elucidated by 1D and 2D NMR, MS and IR spectral data. Compounds 1 and 2 displayed strong antifungal activity against the phytopatogenic fungi Cladosporium cladosporioides and C. sphaerospermum, as well as cytotoxicity against human cervical tumor cell line (HeLa), in in vitro assays. ©2005 Sociedade Brasileira de Química.
Resumo:
Objective: The purpose of this study was to histologically analyze the influence of bioactive glass and/or a calcium sulfate barrier on bone healing in surgically created defects in rat tibias. Material and methods: Sixty-four rats were divided into 4 groups: C (control), CS (calcium sulfate), BG (bioactive glass), and BG/CS (bioactive glass/calcium sulfate). A surgical defect was created in the tibia of each animal. In Group CS, a calcium sulfate barrier was placed to cover the defect. In Group BG the defect was filled with bioactive glass. In Group BG/CS, it was filled with bioactive glass and protected by a barrier of calcium sulfate. Animals were sacrificed at 10 or 30 days post-operative. The formation of new bone in the cortical area of the defect was evaluated histomorphometrically. Results: At 10 days post-operative, Group C presented significantly more bone formation than Groups CS, BG, or BG/CS. No statistically significant differences were found between the experimental groups. At 30 days post-operative, Group C demonstrated significantly more bone formation than the experimental groups. Groups CS and BG/CS showed significantly more bone formation than Group BG. No statistically significant differences were found between Group CS and BG/CS. Conclusions: (a) the control groups had significantly more bone formation than the experimental groups; (b) at 10 days post-operative, no significant differences were found between any of the experimental groups; and (c) at 30 days post-operative, the groups with a calcium sulfate barrier had significantly more bone formation than the group that used bioactive glass only. Copyright © Blackwell Munksgaard 2005.
Resumo:
Antimony based glasses have been investigated for the first time regarding the possibility of holographic data storage using visible lasers sources. Changes in both refractive index and the absorption coefficient were measured using a holographic setup. The modulation of the optical constants is reversible by heat treatment. Bragg gratings were written under visible light of an Ar laser and erased thermally.
Resumo:
The protection efficiency against water corrosion of fluorozirconate glass, ZBLAN, dip-coated by nanocrystalline tin oxide film containing the organic molecule Tiron® was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The chemical bonding structure of the surface region and morphology were studied before and after two water exposure periods of 5 and 30 min. The results of the analysis for the as-grown sample revealed a SnO1.6 phase containing carbon and sulfur, related to Tiron®, and traces of elements related to ZBLAN (Zr, F, Ba). This fact and the clear evidence of the presence of tin oxifluoride specie (SnOxF y) indicates a diffusion of the glass components into the porous coating. After water exposure, the increase of the oxygen concentration accompanied by a strong increase of Zr, F, Ba and Na content is interpreted as filling of the nanopores of the film by glass compounds. The formation of a compact protective layer is supported by the morphological changes observed by AFM. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Spectroscopic properties of ytterbium-doped tellurile glasses with different compositions are reported. Results of linear refractive index, absorption and emission spectra, and fluorescence lifetimes are presented. The studied samples present high refractive index (∼2.0) and large transmission window (380-6000nm). Absorption and emission cross-sections are calculated as well as the minimum pump laser intensity. The results are compared with the values of other laser materials, in order to investigate applications as laser media in the infrared region.
Resumo:
The crystallization of fluoroindate glasses doped with Gd3+, Mn2+ and Cu2+ heat treated at different temperatures, ranging from the glass transition temperature (Tg) to the crystallization temperature (Tc), are investigated by electron paramagnetic resonance (EPR) and 19F nuclear magnetic resonance (NMR). The EPR spectra indicate that the Cu2+ ions in the glass are located in axially distorted octahedral sites. In the crystallized glass, the g-values agreed with those reported for Ba2ZnF6, which correspond to Cu2+ in a tetragonal compressed F- octahedron and to Cu2+ on interstitial sites with a square-planar F- co-ordination. The EPR spectra of the Mn2+ doped glasses exhibit a sextet structure due to the Mn2+ hyperfine interaction. These spectra suggest a highly ordered environment for the Mn2+ ions (close to octahedral symmetry) in the glass. The EPR spectra of the recrystallized sample exhibit resonances at the same position, suggesting that the Mn2+ ions are located in sites of highly symmetric crystalline field. The increase of the line intensity of the sextet and the decrease of the background line in the thermal treated samples suggest that the Mn2+ ions move to the highly ordered sites which contribute to the sextet structure. The EPR spectra of the Gd3+ doped glasses exhibit the typical U-spectrum of a s-state ion in a low symmetry site in disordered systems. The EPR of the crystallized glasses, in contrast, have shown a strong resonance in g ≈ 2.0, suggesting Gd3+ ions in environment close to cubic symmetry. The 19F NMR spin-lattice relaxation rates were also strongly influenced by the crystallization process that takes over in samples annealed above Tc. For the glass samples (doped or undoped) the 19F magnetization recoveries were found to be adjusted by an exponential function and the spin-lattice relaxation was characterized by a single relaxation time. In contrast, for the samples treated above Tc, the 19F magnetization-recovery becomes non-exponential. A remarkable feature of our results is that the changes in the Cu2+, Mn2+, Gd3+ EPR spectra and NMR relaxation, are always observed for the samples annealed above Tc. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Anelastic spectroscopy (internal friction and the dynamic modulus) was measured by means of a torsion pendulum at 3-12 Hz, in the range of 100-300 K, for a KAP metaphosphate glass. Two thermally activated internal friction peaks appeared at ∼190 and ∼250 K. These peaks were attributed to the behavior of potassium ions (high temperature) and to hydrogen (low temperature). Dynamic modulus showed a gradual decrease with increasing temperature in the range studied for all compositions. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The population inversion of the Tm3+ in GLKZ glass involved in the 1470 nm emission (3H4 → 3F 4) as a function of Tb (or Eu) concentration was calculated by computational simulation for a CW laser pumping at 792 nm. These calculations were performed using the experimental Tm→Tb an Tm→Eu transfer rates and the spectroscopic parameters of the Tm (0.1 mol %) system. The result shows that 0.2 mol % (Tb3+) and 0.4 mol % of Eu3+ ions propitiate best population inversion of Tm3+ (0.1 mol %) maximizing the amplification coefficient of germanate (GLKZ) glass when operating as laser intensity amplification at 1470 nm. Besides the effective deactivation of the 3F4 level, the presence of Tb3+ or Eu 3+ ions introduce a depopulation of the 3H4 emitting level by means of a cross relaxation process with Tm3+ ions. In spite of this, the whole effect is verified to be benefic for using Tm-doped GLKZ glass codoped with Tb3+ or Eu3+ as a suitable material for confectioning optical amplifiers that operates in the S-band for telecommunication.
Resumo:
In Lead-cadmium fluorogermanate glasses (PbF2-CdF 2-PbGeO3) the addition of metal fluorides to the base PbGeO3 glass leads to a decrease of the glass transition temperature (Tg) and to an enhancement of the ionic conductivity properties. Based on different spectroscopic techniques (19F NMR, Ge K-edge X-ryas absorption and Raman scattering) an heterogeneous glass structure is proposed at the molecular scale, which can be described by fluoride rich regions permeating the metagermanate chains. The temperature dependence of the 19F NMR lineshapes and relaxation times exhibits the qualitative and quantitative features associated with the high fluoride mobility in these systems. Eu 3+ emission and vibronic spectra are used to follow the crystallization process leading to transparent glass ceramics.
Resumo:
Objective: The purpose of this study was to analyze histologically the influence of bioactive glass (BG) with or without a calcium sulfate (CS) barrier on bone healing in surgically created critical-size defects (CSD) in rat calvaria. Material and methods: A CSD was made in each calvarium of 48 rats. They were divided into three groups: C (control): blood clot only; BG: defect filled with BG; and BG/CS: defect filled with BG covered by a CS barrier. Animals were euthanized at 4 or 12 weeks. Formation of new bone was evaluated histomorphometrically. Results: No defect completely regenerated with bone. BG particles were observed in Groups BG and BG/CS at both periods of analysis. The thickness throughout the healing area in Groups BG and BG/CS was similar to the original calvarium, while Group C presented a thin connective tissue in the center of the defect in both periods of analysis. At 4 weeks, Groups C and BG/CS presented significantly more bone formation than Group BG. No significant differences were found between Groups C and BG/CS. At 12 weeks, no significant differences in the amount of bone formation were observed among the three groups. When comparing 4 and 12 weeks, there was a significant increase in new bone formation within groups BG and BG/CS, but not C. Conclusion: BG particles, used with or without a CS barrier, maintained the volume and contour of the area grafted in CSD. However, they did not lead to a significant difference in bone formation when compared with control at 12 weeks post-operative. © 2007 Blackwell Munksgaard.
Resumo:
Nonlinear (NL) optical properties of antimony oxide based glasses (AG) were characterized for excitation wavelengths from 800 to 1600 m. The NL refractive indices, n2, and the two-photon absorption (TPA) coefficient, β, have been evaluated using the Z-scan technique. Values of n2≈ 10-15 - 10-14 cm2/W of electronic origin were measured and negligible TPA coefficients (β < 0.003 cm/GW) were determined. The response time of the nonlinearity is faster than 100 fs as determined using the Kerr shutter technique. The figure-of-merit usually considered for all-optical switching, T = 2βλ/n2 , indicates that AG are very good materials for ultrafast switches at telecom wavelengths. © 2007 IEEE.
Resumo:
A protocol to produce large amounts of bioactive homogeneous human interferon β1 expressed in Escherichia coli was developed. Human interferon β1 ser17 gene was constructed, cloned and subcloned, and the recombinant protein expressed in E. coli cells. Solubilization of recombinant human interferon β1 ser17 (rhIFN-β1 ser17) was accomplished by employing a brief shift to high alkaline pH in the presence of non-ionic detergent. The recombinant protein was purifi ed by three chromatographic steps. N-terminal amino acid sequencing and mass spectrometry analysis provided experimental evidence for the identity of the recombinant protein. Reverse phase liquid chromatography demonstrated that the content of deamidates and sulphoxides was similar to a commercial standard. Size exclusion chromatography demonstrated the absence of high molecular mass aggregates and dimers. The protocol represents an effi cient and high-yield method to obtain bioactive homogeneous monomeric rhIFN-β1 ser17 protein. It may thus represent an important step towards scaling up for rhIFN-β1 ser17 large-scale production. © 2010 Villela AD, et al.
Resumo:
Optical characteristics of tellurite glasses containing silver nanoparticles (NPs) and the influence on the emission spectrum of Er 3+ ions were studied. The transitions 4f ↔ 4f from erbium ions, mainly the 4I13/2 → 4I15/2 transition that involve upconversion energy process, have a strongly dependence with the chemical structure of the rare earth ion. In the present work, silver nanparticles (NPs) embedded in the host vitreous material, show a significant enhance (or quenching) on the erbium fluorescence due the long-range electromagnetic interaction between the plasmon surface energy of the Ag NPs (Localized Surface Plasmon Resonance -LSPR) and the Er3+ ions.
Resumo:
The aim of this study was to evaluate the effect of platelet rich plasma (PRP) associated to bovine inorganic bone (Bio-Oss®; Geistlich) or bioactive glass (Bio-Gran®; Orthovita, Implant Innovations) on bone healing. Bone cavities were prepared in both sides of the mandible of 4 adult male dogs. The cavities were divided into 4 groups according to the filling material as follows: control, PRP, PRP/Bio-Oss, PRP/Bio-Gran. The animals were sacrificed after 120 days and histological and histomorphometrical analysis was performed. The control group showed 80.6% of bone formation in the longitudinal sections at 6 mm depth and 83.7% at 13 mm depth. The transverse sections displayed 74.2% at both 6 and 13 mm depths. The PRP group showed 21.1% of bone formation in the longitudinal sections at 6 mm depth, and 23.1% at 13 mm depth. The transverse sections presented 28.98% of bone formation at 6 mm depth and 41.2% at 13 mm depth. The PRP/Bio-Gran group showed 25.1% of bone formation in the longitudinal sections at 6 mm depth and 30.4% at 13 mm depth. In the transverse sections, the bone formation was 43.0% at 6 mm depth and 39.7% at 13 mm depth. The PRP/Bio-Oss group showed 35.5% of bone formation in the longitudinal sections at 6 mm depth and 42% at 13 mm depth. In the transversal sections, the bone formation was 26.8% and 31.2% at the depths of 6 and 13 mm, respectively. PRP alone or associated with bovine inorganic bone or bioglass had no significant effect in bone healing.