993 resultados para Hadewijch, 1200-1260
Resumo:
Cr3+-doped NH4Al(OH)(2)CO3 nanotubes, templated by surfactant assemblies, were successfully synthesized via the homogenization precipitation method, and various crystallographic phase Al2O3:Cr3+ nanotubes were also obtained by postannealing at different temperatures. The characteristic R-1, R-2 doublet line transitions of ruby can be observed in the high crystalline alpha-Al2O3 nanotubes calcined at temperatures higher than 1200 degrees C. The results also indicate that the formation mechanism of the tubular nanostructures should result from the self-rolling action of layered compound NH4Al(OH)(2)CO3 under the assistance of the surfactant soft-template. The convenient synthetic procedure, excellent reproducibility, clean reactions, high yield, and fine quality of products in this work make the present route attractive and significant. Aluminum oxide nanotubes with high specific surface area could be used as fabricating nanosized optical devices doped with different elements and stable catalyst supports of metal clusters.
Resumo:
CeO2 thin film was fabricated by dual ion beam epitaxial technique. The violet/blue PL at room temperature and lower temperature was observed from the CeO2 thin film. After the analysis of crystal structure and valence in the compound was carried out by the XRD and XPS technique, it was inferred that the origin of CeO2 PL was due to the electrons transition from Ce4f band to O2p band and the defect level to O2p band. And these defects levels were located in the range of 1 eV around Ce4f band.
Resumo:
Using time-resolved photoluminescence (PL) measurements, we have studied the exciton localization effect in InGaAs/GaAs quantum wire (QWR) structures formed in corrugated narrow InGaAs/GaAs quantum wells (QWs) grown on (553)B GaAs substrate. The PL decay time in the QWR structure was found to be independent of the temperature for T < 70 K, showing a typical dynamical behavior of the localized excitons. This result is in striking contrast to the corresponding quantum well structures, where a linear increase of the PL decay time was observed. In addition, an increase of the exciton lifetime was observed at low temperature for the QWR structure as compared to a reference InGaAs/GaAs quantum well sample (1200 vs 400 ps). The observed longer decay time was attributed to the reduction in the spatial coherence of excitons in the QWR-like structure. In PL measurements, a significant polarization anisotropy was also found in our narrow InGaAs/GaAs QWs grown on (553)B GaAs. (C) 2001 American Institute of Physics.
Resumo:
Amorphous Sic films are deposited on Si (111) substrates by rf magnetron sputtering and then annealed at 1200 degreesC for different times by a dc self-heating method in a vacuum annealing system. The crystallization of the amorphous Sic is determined by Raman scattering at room temperature and X-ray diffraction. The experimental result indicates that the Sic nanocrystals have formed in the films. The topography of the as-annealed films is characterized by atomic force microscopy. Measurements of photoluminescence of the as-annealed films show blue or violet light emission from the nanocrystalline Sic films and photoluminescence peak shifts to short wavelength side as the annealing time decreases.
Resumo:
Epitaxial growth of SiC on complex substrates was carried out at substrate temperature from 1200 degreesC to 1400 degreesC. Three kinds of new complex substrates, c-plane sapphire, AlN/sapphire, and GaN/AlN/sapphire, were used in this study. We obtained a growth rate in the range of 1-6 mum/h. Thick (6 mum) SIC epitaxial layers with no cracks were successfully obtained on AlN/sapphire and GaN/AlN/sapphire substrates. X-ray diffraction patterns have confirmed that single-crystal SiC was obtained on these complex substrates. Analysis of optical transmission spectra of the SIC grown on sapphire substrates shows the lowest-energy gap near 2.2 eV, which is the value for cubic SiC. The undoped SIC showed n-type electrical conductivity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We report the molecular beam epitaxy growth of 1.3 mu m InAs/GaAs quantum-dot (QD) lasers with high characteristic temperature T-0. The active region of the lasers consists of five-layer InAs QDs with p-type modulation doping. Devices with a stripe width of 4 mu m and a cavity length of 1200 mu m are fabricated and tested in the pulsed regime under different temperatures. It is found that T-0 of the QD lasers is as high as 532K in the temperature range from 10 degrees C to 60 degrees C. In addition, the aging test for the lasers under continuous wave operation at 100 degrees C for 72 h shows almost no degradation, indicating the high crystal quality of the devices.
Resumo:
利用地下热水来加热低沸点工质(如氯乙烷、正丁烷、异丁烷、氟利昂等),使它变为蒸汽,然后去驱动汽轮发电机组发电的“双流系统”地热发电,是一种有发展前途的地热发电方式。这种发电方式的一个重要问题是如何选择一种高效,小体积的换热设备。我们在广东省丰顺县邓屋双流系统地热电站建设中,选用了螺旋板式换热器作为异丁烷蒸发器和预热器。其中预热器是选用了苏州化工机械厂的系列产品不可拆螺旋板换热器,型号为I16 T70—1.0/1200—10。蒸发器为我们自行设计,结
Resumo:
A novel miniature cylindrical combustor, whose chamber wall is made of porous material, has been designed and experimented for reducing heat loss and enhancing flame stability. The combustor has the function of reducing wall heat loss, extending residence time and avoiding radical chemical quenching with a self-thermal insulation concept in which heat loss reduction is obtained by the opposite flow directions between thermal energy transfer and mass flow. The methane/air mixture flames formed in the chamber are blue and tubular in shape. Between the flames and the porous wall, there is a thin unburned film that plays a significant role in reducing the flames' heat loss and keeping the flames stable. The porous wall temperature was 150-400 degrees C when the temperatures of the flames and exhaust gas were more than 1200 degrees C. When the equivalence ratio phi < 1.0, the methane conversion ratio was above 95%; the combustion efficiency was near 90%; and the overall sidewall heat loss was less than 15% in the 1.53 cm(3) chamber. Moreover, its combustion efficiency is stable in a wider combustion load (input power) range.
Design and Operation of A 5.5 MWe Biomass Integrated Gasification Combined Cycle Demonstration Plant
Resumo:
The design and operation of a 5.5 MWe biomass integrated gasification combined cycle (IGCC) demonstration plant, which is located in Xinghua, Jiangsu Province of China, are introduced. It is the largest complete biomass gasification power plant that uses rice husk and other agricultural wastes as fuel in Asia. It mainly consists of a 20 MWt atmospheric circulating fluidized-bed gasifier, a gas-purifying system, 10 sets of 450 kW(e) gas engines, a waste heat boiler, a 1.5 MWe steam turbine, a wastewater treatment system, etc. The demonstration plant has been operating since the end of 2005, and its overall efficiency reaches 26-28%. Its capital cost is less than 1200 USD/kW, and its running cost is about 0.079 USD/kWh based on the biomass price of 35.7 USD/ton. There is a 20% increment on capital cost and 35% decrease on the fuel consumption compared to that of a 1 MW system without a combined cycle. Because only part of the project has been performed, many of the tests still remain and, accordingly, must be reported at a later opportunity.
Resumo:
A novel inorganic-organic hybrid hydrophobic anti-reflection silica film used for laser crystal was obtained by sol-gel process. The film consisted of silica sols mixed with a small amount of polymethyl methacrylate (PMMA) or polystyrene (PS). The optical transparency, hydrophobic property and surface morphology of the film were characterized by UV-VIS-NIR spectrophotometer; contact angle instrument and Scanning Electron Microscopy (SEM), respectively. The results showed that the anti-reflection coating had good hydrophobility and optical transparency from 400 nm to 1200 nm. The contact angle reached to 130-140 degrees. SEM images indicated the hydrophobic films modified with PMMA or PS had compact structure compared to the pure silica sol film. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
La2Zr2O7是一种近年来才提出的新型热障涂层材料,该材料熔点高,在熔点以下不发生相变,热导率低,抗烧结及没有氧传输发生,这些特点使得它作为一种高温下应用的热障涂层材料越来越引起人们的重视。但是,由于该材料的热膨胀系数和断裂韧性比较低,它的实际应用受到了限制。 在本论文中,使用高压烧结的方法获得了致密化的纳米La2Zr2O7块体材料,并对其断裂韧性和热膨胀系数进行了研究。得到的La2Zr2O7纳米材料的断裂韧性和热膨胀系数分别为1.98MPam1/2和9.6×10-6K-1 (200-1000℃),这些数值明显高于非纳米的La2Zr2O7陶瓷(断裂韧性和热膨胀系数分别为1.40 MPam1/2 和 9.1×10-6 K-1,该结果表明纳米化是一种提高材料断裂韧性和热膨胀系数的有效方法。在La2Zr2O7纳米粉末中加入8YSZ纳米颗粒,高压烧结后使其颗粒充分生长,在得到的复相化合物中观察到形成了类似棒状晶体的自增韧相,使得复合材料的断裂韧性(1.88 MPam1/2)比La2Zr2O7有所提高,甚至超过了同样条件下制备的8YSZ样品的断裂韧性。 La2Zr2O7的断裂韧性也可以通过在基体中添加BaTiO3铁电材料得到明显的提高。当添加BaTiO3的体积含量达到10vol%时,4.5GPa,1450℃高压烧结10min得到的复合材料断裂韧性达1.98 MPam1/2,明显高于同条件下烧结的La2Zr2O7 (1.60MPam1/2)。应力诱导下BaTiO3的电畴转向是主要的增韧原因。随着BaTiO3颗粒添加的体积含量增加,复相化合物的热膨胀系数也明显提高。当掺杂20vol%BaTiO3时,得到的复合材料平均热膨胀系数达到10.2×10-6K-1 (150~1200℃)。 我们通过在4.5GPa, 1650℃高压烧结5min的方法还获得了掺杂YAG纳米颗粒的La2Zr2O7纳米复相陶瓷。在室温下测量了材料的维氏硬度,并通过压痕裂纹长度计算出了材料的断裂韧性。随着YAG纳米颗粒体积含量的增加,纳米复相陶瓷的断裂韧性和维氏硬度都依次增加,当添加20vol%的YAG纳米颗粒时达到最大,分别为1.93 MPam1/2和11.45GPa。断裂韧性增加的机理可归结为以下三点:一是YAG纳米颗粒的添加提高了La2Zr2O7基体的晶界强度,二是基体晶粒尺寸变化的影响,三是YAG纳米颗粒对裂纹的偏转和钉扎作用。添加微米YAG颗粒的复相化合物因为和纳米复相陶瓷具有不同的增韧机制,因此断裂韧性的变化趋势也不相同,在掺入10vol%的YAG微米颗粒时,复合材料的断裂韧性最大,而后降低,当掺入YAG微米粒子的体积含量达到20vol%时,断裂韧性甚至低于La2Zr2O7。 从20世纪90年代开始,电纺作为一种合成纤维的办法越来越吸引人们的注意。其合成的纤维长度长,直径均匀,并且组成范围很广。最初,电纺只是被用来合成一些有机聚合物的纤维,最近,很多研究组开始致力于使用电纺的方法合成复合纤维或者陶瓷纤维。 在本论文中,我们使用电纺的方法获得了La2Zr2O7纳米纤维和SiC单晶纳米线。1000℃煅烧得到的La2Zr2O7纳米纤维具有烧绿石结构,直径在200~500nm之间。同样的温度煅烧时得到的La2Zr2O7纳米纤维的比表面积要明显高于粉末样品的,表明纤维的抗烧结性能比粉末的高。得到的SiC纳米线直径在50~100nm之间,表面有一约5nm厚的无定形的SiO2薄层。 使用电纺的方法,恰当的控制煅烧条件,我们获得了La2Ce2O7, La2(Zr0.745Ce0.386)2O7.524和8YSZ中空纤维。这种中空结构减小了粒子之间的接触面积,提高了材料的抗烧结性能。在扫描电镜分析的基础上,我们总结了这些中空纤维的形成过程。
Resumo:
对生物小分子体系及人体血浆多元本系中稀土化学形态的研究是考察体内稀土吸收、代谢和生物效应的关键,对阐明稀土对环境和人体健康的影响具有十分重要的意义。本文用pH滴定法和数学模型法研究了生物小分子体系及人体血浆中稀土、钙和锌的化学形态。取得了很有价值的新结果。1.稀土及钙、锌生物小分子溶液体系的研究(1)在模拟生理条件下,用pH滴定法对Pr、Gd、Tb、Yb、Ca、Zn六种金属离子与乳酸、天冬酰胺、瓜氨酸、硫代苹果酸、丁二酸五种小分子生物配体形成的三十个二元体系进行了研究。利用SCOGS2程序处理滴定数据,得到了各体系中合理的物种类型及稳定常数值。在两种氨基酸体系中,稀土和钙均只生成1200型一种配合物,而锌而有1100和1200型两种物种出现。在其它三种小分子有机酸体系中,稀土只生成1100型一种配合物,而钙和锌的物种则相对较多。一般来说,配合物稳定性顺序为:稀 > 稀土 >钙。(2)在模拟生理条件下,用pH滴定法对Pr、Gd、Tb、Yb、Ca、Zn六种金属离子与以柠檬酸为第一配体,分别以乳酸、谷氨酸、组氨酸、脯氨酸、亮氨酸、天冬氨酸为第二配体组成的三十六个三元体系进行了研究,能过计算确定了体系中存在的物种形式,并得到了各三元配合物的稳定常数值。另外,对各体系中金属的物种分布情况也作了深入的研究。各三元体系中均有三元物种生成。除M-Cit-Pro体系中三元配合物种类较少外,其余体系中稀土的三元配合物物种都在两种以上,而锌和钙的三元物种相对要少一些。空间位阻效应对三元配合物稳定性的影响较明显。各体系中稀土离子的配位行为相近,相应三元配合物稳定性有随离子半径减小而增大的趋势。钙的相应三元配合物没有稀土的稳定。锌的配合物稳定性与相应稀土配合物的稳定性相差不大,有的比稀土的低。2.稀土及钙、锌与生物分子多元体系的数学模型法研究(1)利用已有的金属离子与生物小分子二、三元体系的数据,经COMICS程序计算,得到了稀土Pr和Ca共存于以柠檬酸为第一配体,分别以乳酸、谷氨酸、组氨酸、脯氨酸、亮氨酸、天冬氨酸为第二配体的四元体系中金属的物种分布情况,并对体系中的物种变化作了分析。各体系中钙对镨的物种分布基本无影响。而镨对钙有较大影响,且对钙的三元配合物的影响更为强烈。(2)对Tb(III)、Ca(II)和Zn(II)在含有29种配体的人体血浆模型中的物种分布进行了数学模型法研究,并研究了Pb(III)对Ca(II)和Zn(II)物种分布的影响。结果表明,Tb(III)在人体血浆中主要以TbPO_4和Tb_2(CO_3)_3沉淀的形式存在。可溶Tb(III)在浓度较低时,主要与运铁蛋白结合成生[Tb(Tf)];在浓度较高时,主要以[Tb(HSA)]和[Tb_2(Tf)]的形式存在。Tb(III)浓度的升高将导致自由Ca(II)离子含量的增加和Ca(II)配合物含量的降低。Tb(III)在较高浓度时使Zn(II)配合物的含量降低,对[Zn(Tf)]的影响最显著。