817 resultados para HERMITE POLYNOMIALS
Resumo:
A positive summability trigonometric kernel {K(n)(theta)}(infinity)(n=1) is generated through a sequence of univalent polynomials constructed by Suffridge. We prove that the convolution {K(n) * f} approximates every continuous 2 pi-periodic function f with the rate omega(f, 1/n), where omega(f, delta) denotes the modulus of continuity, and this provides a new proof of the classical Jackson`s theorem. Despite that it turns out that K(n)(theta) coincide with positive cosine polynomials generated by Fejer, our proof differs from others known in the literature.
Resumo:
Partition of Unity Implicits (PUI) has been recently introduced for surface reconstruction from point clouds. In this work, we propose a PUI method that employs a set of well-observed solutions in order to produce geometrically pleasant results without requiring time consuming or mathematically overloaded computations. One feature of our technique is the use of multivariate orthogonal polynomials in the least-squares approximation, which allows the recursive refinement of the local fittings in terms of the degree of the polynomial. However, since the use of high-order approximations based only on the number of available points is not reliable, we introduce the concept of coverage domain. In addition, the method relies on the use of an algebraically defined triangulation to handle two important tasks in PUI: the spatial decomposition and an adaptive polygonization. As the spatial subdivision is based on tetrahedra, the generated mesh may present poorly-shaped triangles that are improved in this work by means a specific vertex displacement technique. Furthermore, we also address sharp features and raw data treatment. A further contribution is based on the PUI locality property that leads to an intuitive scheme for improving or repairing the surface by means of editing local functions.
Resumo:
The purpose of this article is to present a new method to predict the response variable of an observation in a new cluster for a multilevel logistic regression. The central idea is based on the empirical best estimator for the random effect. Two estimation methods for multilevel model are compared: penalized quasi-likelihood and Gauss-Hermite quadrature. The performance measures for the prediction of the probability for a new cluster observation of the multilevel logistic model in comparison with the usual logistic model are examined through simulations and an application.
Resumo:
We study the growth of Df `` (f(c)) when f is a Fibonacci critical covering map of the circle with negative Schwarzian derivative, degree d >= 2 and critical point c of order l > 1. As an application we prove that f exhibits exponential decay of geometry if and only if l <= 2, and in this case it has an absolutely continuous invariant probability measure, although not satisfying the so-called Collet-Eckmann condition. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Quadratic alternative superalgebras are introduced and their super-identities and central functions on one odd generator are described. As a corollary, all multilinear skew-symmetric identities and central polynomials of octonions are classified. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The authors` recent classification of trilinear operations includes, among other cases, a fourth family of operations with parameter q epsilon Q boolean OR {infinity}, and weakly commutative and weakly anticommutative operations. These operations satisfy polynomial identities in degree 3 and further identities in degree 5. For each operation, using the row canonical form of the expansion matrix E to find the identities in degree 5 gives extremely complicated results. We use lattice basis reduction to simplify these identities: we compute the Hermite normal form H of E(t), obtain a basis of the nullspace lattice from the last rows of a matrix U for which UE(t) = H, and then use the LLL algorithm to reduce the basis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We discuss a strong version of the Dunford-Pettis property, earlier named (DP*) property, which is shared by both l(1) and l(infinity) It is equivalent to the Dunford-Pettis property plus the fact that every quotient map onto c(0) is completely continuous. Other weak sequential continuity results on polynomials and analytic mappings related to the (DP*) property are shown.
Resumo:
Let A be a (non-necessarily associative) finite-dimensional algebra over a field of characteristic zero. A quantitative estimate of the polynomial identities satisfied by A is achieved through the study of the asymptotics of the sequence of codimensions of A. It is well known that for such an algebra this sequence is exponentially bounded. Here we capture the exponential rate of growth of the sequence of codimensions for several classes of algebras including simple algebras with a special non-degenerate form, finite-dimensional Jordan or alternative algebras and many more. In all cases such rate of growth is integer and is explicitly related to the dimension of a subalgebra of A. One of the main tools of independent interest is the construction in the free non-associative algebra of multialternating polynomials satisfying special properties. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We exhibit a family of trigonometric polynomials inducing a family of 2m-multimodal maps on the circle which contains all relevant dynamical behavior.
Resumo:
For each ideal of multilinear mappings M we explicitly construct a corresponding ideal (a)M such that multilinear forms in (a)M are exactly those which can be approximated, in the uniform norm, by multilinear forms in M. This construction is then applied to finite type, compact, weakly compact and absolutely summing multilinear mappings. It is also proved that the correspondence M bar right arrow (a)M. IS Aron-Berner stability preserving.
Resumo:
We consider polynomial identities satisfied by nonhomogeneous subalgebras of Lie and special Jordan superalgebras: we ignore the grading and regard the superalgebra as an ordinary algebra. The Lie case has been studied by Volichenko and Baranov: they found identities in degrees 3, 4 and 5 which imply all the identities in degrees <= 6. We simplify their identities in degree 5, and show that there are no new identities in degree 7. The Jordan case has not previously been studied: we find identities in degrees 3, 4, 5 and 6 which imply all the identities in degrees <= 6, and demonstrate the existence of further new identities in degree 7. our proofs depend on computer algebra: we use the representation theory of the symmetric group, the Hermite normal form of an integer matrix, the LLL algorithm for lattice basis reduction, and the Chinese remainder theorem. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The question raised in the title has been answered by comparing the solvatochromism of two series of polarity probes, the lipophilicities of which were increased either by increasing the length of an alkyl group (R) attached to a fixed pyridine-based structure or through annelation (i.e., by fusing benzene rings onto a central pyridine-based structure). The following novel solvatochromic probes were synthesized: 2,6-dibromo-4-[(E)-2-(1-methylquinolinium-4-yl)ethenyl]-phenolate (MeQMBr(2)) and 2,6-dibromo-4-[(E)-2-(1-methyl-acridinium-4- yl) ethenyl)]phenolate (MeAMBr(2) The solvatochromic behavior of these probes, along with that of 2,6dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl]phenol-ate(MePMBr(2)) was analyzed in terms of increasing probe lipophilicity, through annelation. Values of the empirical solvent polarity scale [E(T)(MePMBr(2))] in kcalmol(-1) correlated linearly with ET(30), the corresponding values for the extensively employed probe 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (RB). On the other hand, the nonlinear correlations of ET(MeQMBr(2)) or ET(MeAMBr(2)) with E(T)(30) are described by second-order polynomials. Possible reasons for this behavior include: i) self-aggregation of the probe, ii) photoinduced cis/trans isomerization of the dye, and iii) probe structure- and solvent-dependent contributions of the quinonoid and zwitterionic limiting formulas to the ground and excited states of the probe. We show that mechanisms (i) and (ii) are not operative under the experimental conditions employed; experimental evidence (NMR) and theoretical calculations are presented to support the conjecture that the length of the central ethenylic bond in the dye increases in the order MeAMBr(2) > MeQMBr(2) > MePMBr(2), That is, the contribution of the zwitterionic limiting formula predominates for the latter probe, as is also the case for RB, this being the reason for the observed linear correlation between the ET(MePMBr2) and the ET(30) scales. The effect of increasing probe lipophilicity on solvatochromic behavior therefore depends on the strategy employed. Increasing the length of R affects solvatochromism much less than annelation, because the former structural change hardly perturbs the energy of the intramolecular charge-transfer transition responsible for solvatochromism. The thermo-solvatochromic behavior (effect of temperature on solvatochromism) of the three probes was studied in mixtures of water with propanol and/or with DMSO. The solvation model used explicitly considers the presence of three ""species"" in the system: bulk solution and probe solvation shell [namely, water (W), organic solvent (Solv)], and solvent-water hydrogen-bonded aggregate (Solv-W). For aqueous propanol, the probe is efficiently solvated by Solv-W; the strong interaction of DMSO with W drastically decreases the efficiency of Solv-W in solvating the probe, relative to its precursor solvents. Temperature increases resulted in desolvation of the probes, due to the concomitant reduction in the structured characters of the components of the binary mixtures.
Resumo:
This thesis presents general methods in non-Gaussian analysis in infinite dimensional spaces. As main applications we study Poisson and compound Poisson spaces. Given a probability measure μ on a co-nuclear space, we develop an abstract theory based on the generalized Appell systems which are bi-orthogonal. We study its properties as well as the generated Gelfand triples. As an example we consider the important case of Poisson measures. The product and Wick calculus are developed on this context. We provide formulas for the change of the generalized Appell system under a transformation of the measure. The L² structure for the Poisson measure, compound Poisson and Gamma measures are elaborated. We exhibit the chaos decomposition using the Fock isomorphism. We obtain the representation of the creation, annihilation operators. We construct two types of differential geometry on the configuration space over a differentiable manifold. These two geometries are related through the Dirichlet forms for Poisson measures as well as for its perturbations. Finally, we construct the internal geometry on the compound configurations space. In particular, the intrinsic gradient, the divergence and the Laplace-Beltrami operator. As a result, we may define the Dirichlet forms which are associated to a diffusion process. Consequently, we obtain the representation of the Lie algebra of vector fields with compact support. All these results extends directly for the marked Poisson spaces.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Growth curves models provide a visual assessment of growth as a function of time, and prediction body weight at a specific age. This study aimed at estimating tinamous growth curve using different models, and at verifying their goodness of fit. A total number 11,639 weight records from 411 birds, being 6,671 from females and 3,095 from males, was analyzed. The highest estimates of a parameter were obtained using Brody (BD), von Bertalanffy (VB), Gompertz (GP,) and Logistic function (LG). Adult females were 5.7% heavier than males. The highest estimates of b parameter were obtained in the LG, GP, BID, and VB models. The estimated k parameter values in decreasing order were obtained in LG, GP, VB, and BID models. The correlation between the parameters a and k showed heavier birds are less precocious than the lighter. The estimates of intercept, linear regression coefficient, quadratic regression coefficient, and differences between quadratic coefficient of functions and estimated ties of quadratic-quadratic-quadratic segmented polynomials (QQQSP) were: 31.1732 +/- 2.41339; 3.07898 +/- 0.13287; 0.02689 +/- 0.00152; -0.05566 +/- 0.00193; 0.02349 +/- 0.00107, and 57 and 145 days, respectively. The estimated predicted mean error values (PME) of VB, GP, BID, LG, and QQQSP models were, respectively, 0.8353; 0.01715; -0.6939; -2.2453; and -0.7544%. The coefficient of determination (RI) and least square error values (MS) showed similar results. In conclusion, the VB and the QQQSP models adequately described tinamous growth. The best model to describe tinamous growth was the Gompertz model, because it presented the highest R-2 values, easiness of convergence, lower PME, and the easiness of parameter biological interpretation.