968 resultados para Ferrites (Magnetic materials)
Resumo:
The effects of competing magneto-crystalline and shape anisotropies on magnetization reversal were studied in situ in arrays of sub-micron Fe/Co ellipses of compositions Fe2/Co6 and Fe8/Co3 with magnetic force microscopy (MFM). A simple model assigning magnetization values to the different types of domain structures observed in the MFM images was used to estimate the field dependence of the total magnetization of a sample. The agreement with macroscopic magnetization measurements is discussed.
Resumo:
The magnetic domain structure of micron-sized elliptic permalloy elements has been studied by magnetic force microscope (MFM) measurements, and has been compared to results from micromagnetic simulations. The elements all have the same aspect ratio, whereas the inter-elemental distance has been varied. Both the zero-field states and in field domain configurations have been studied. In zero-applied field, two different stable flux-closure states were found in both the MFM measurements and in the simulations. The different stable domain states occur as a result of minute differences in the local magnetic environment occurring during the demagnetization process. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The nonlinear response of a ferroic to an applied field has been studied through the phenomenological Rayleigh Law for over a hundred years. Yet, despite this, the fundamental physical mechanisms at the nanoscale that lead to macroscopic Rayleigh behavior have remained largely elusive, and experimental evidence at small length scales is limited. Here, it is shown using a combination of scanning probe techniques and phase field modeling, that nanoscale piezoelectric response in prototypical Pb(Zr,Ti)O3 films appears to follow a distinctly non-Rayleigh regime. Through statistical analysis, it is found that an averaging of local responses can lead directly to Rayleigh-like behavior of the strain on a macroscale. Phase-field modeling confirms the twist of the ferroelastic interface is key in enhancing piezoelectric response. The studies shed light on the nanoscale origins of nonlinear behavior in disordered ferroics.
Resumo:
Germanium is an attractive channel material for MOSFETs because of its higher mobility than silicon. In this paper, GeO2 has been investigated as an interfacial layer for high-kappa gate stacks on germanium. Thermally grown GeO2 layers have been prepared at 550 degrees C to minimise GeO volatilisation. GeO2 growth has been performed in both pure O-2 ambient and O-2 diluted with N-2. GeO2 thickness has been scaled down to approximately 3 nm. MOS capacitors have been fabricated using different GeO2 thicknesses with a standard high-kappa dielectric on top. Electrical properties and thermal stability have been tested up to at least 350 degrees C. The K value of GeO2 was experimentally determined to be 4.5. Interface state densities (D-it) of less than 10(12) CM-2 eV(-1) have been extracted for all devices using the conductance method.
Resumo:
A mechanism of CO oxidation by a thin surface oxide of Rh supported on ceria is proposed: CO is oxidized by the Rh-oxide film, which is subsequently reoxidized by a ceria surface O atom. The proposed mechanism is supported by in situ Raman spectroscopic investigations.
Resumo:
Gold-coated magnetic nanoparticles were synthesized with size ranging from 15 to 40 nm using sodium citrates as the reducing agent. Oxidized magnetites (Fe3O4) fabricated by co-precipitation of Fe2+ and Fe3+ in strong alkaline solution were used as magnetic cores. The structures of gold (Au) shell and magnetic core (Au–Fe) were studied by transmission electron microscopy (TEM) image and energy dispersive spectroscopy (EDS) spectrum. Results from high-resolution X-ray diffraction (HR XRD) show that the Au–Fe oxide nanoparticles have a face-centered cubic shape with the crystalline faces of {1 1 1}. The Au-coated magnetic nanoparticles exhibited a surface plasmon resonance peak at 528 nm. The nanoparticles are well dispersed in distilled water. A 3000 G permanent magnet was successfully used for the separation of the functionalized nanoparticles. Magnetic properties of the nanoparticles were determined by magnetic force microscope (MFM) in nanometric resolution and vibrating sample magnetometer (VSM). Magnetic separation of biological molecules using Au-coated magnetic oxide composite nanoparticles was examined after attachment of protein immunoglobulin G (IgG) through electrostatic interactions. Using this method, separation was achieved with a maximum yield of 35% at an IgG concentration of 400 ng/ml.
Resumo:
Semiclassical nonlocal optics based on the hydrodynamic description of conduction electrons might be an adequate tool to study complex phenomena in the emerging field of nanoplasmonics. With the aim of confirming this idea, we obtain the local and nonlocal optical absorption spectra in a model nanoplasmonic device in which there are spatial gaps between the components at nanometric and subnanometric scales. After a comparison against time-dependent density functional calculations, we conclude that hydrodynamic nonlocal optics provides absorption spectra exhibiting qualitative agreement but not quantitative accuracy. This lack of accuracy, which is manifest even in the limit where induced electric currents are not established between the constituents of the device, is mainly due to the poor description of induced electron densities.
Resumo:
Here we describe the development of the MALTS software which is a generalized tool that simulates Lorentz Transmission Electron Microscopy (LTEM) contrast of magnetic nanostructures. Complex magnetic nanostructures typically have multiple stable domain structures. MALTS works in conjunction with the open access micromagnetic software Object Oriented Micromagnetic Framework or MuMax. Magnetically stable trial magnetization states of the object of interest are input into MALTS and simulated LTEM images are output. MALTS computes the magnetic and electric phases accrued by the transmitted electrons via the Aharonov-Bohm expressions. Transfer and envelope functions are used to simulate the progression of the electron wave through the microscope lenses. The final contrast image due to these effects is determined by Fourier Optics. Similar approaches have been used previously for simulations of specific cases of LTEM contrast. The novelty here is the integration with micromagnetic codes via a simple user interface enabling the computation of the contrast from any structure. The output from MALTS is in good agreement with both experimental data and published LTEM simulations. A widely-available generalized code for the analysis of Lorentz contrast is a much needed step towards the use of LTEM as a standardized laboratory technique.
Resumo:
We present a simple method of forming a switchable radar cross-section (RCS) in evanescent waveguide.Here, the antenna can be selected to be matched to free space, or to act as an almost perfect reflector of incident energy via a single SPST switch located at the antenna aperture. With the aperture switch open, the antenna is matched over a measured bandwidth of 17.5%, from 2.35 to 2.8 GHz, for reflection coefficient <-10 dB, in 2.725 GHz cutoff waveguide. With the aperture switch closed, a minimum reflection coefficient of -2.5 dB across the bandwidth is observed, proving that the antenna has the capacity to be made RCS reconfigurable. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:1849–1851, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26981
Resumo:
This article describes a practical demonstration of a complete full-duplex “amplitude shift keying (ASK)” retrodirective radio frequency identification (RFID) transceiver array.The interrogator incorporates a “retrodirective array (RDA)” with a dual-conversion phase conjugating architecture in order to achieve better performance than is possible with conventional RFID solutions. Here mixers phase conjugate the incoming signal and a carrier recovery circuit recovers incoming angle of arrival phase information of an encoded amplitude shift keyed signal. The resulting interrogator provides a receiver sensitivity level of -109 dBm. A four element square patch RDA gives a 3 dB automatic beam steering angle of acceptance of ±45°. When compared to an RFID system operating by conventional (non-retrodirective) means retrodirective action leads to improved range extension of up to 16 times at ±45°. Operator pointing accuracy requirements are also reduced due to automatic retrodirective self-pointing. These features significantly enhance deployment opportunities requiring long range low equivalent isotropic radiation power (EIRP) and/or RFID tagging of moving platforms. © 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:160–164, 2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.27258
Resumo:
This article describes by means of a simple model how signal recombination effects behave under the influence of phase conjugating retrodirective array (RDA) technology. A two-ray ground reflection model is used to predict the operational advantages of RDA technology in multipath rich environments. The simulation results show that advantageous signal recombination occurs due to automatic self-phasing. As the number of elements in the RDA increases, the fading effect normally observed due to out of phase multipath signal is mitigated to the extent that the system approaches that of one operating in a free space environment. © 2013 Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:1987–1989, 2013
Resumo:
Strain-dependent microstructural modifications were observed in epitaxial BiCrO3 (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCOSTO [BCO grown on buffered SrTiO3 (001)] and in-plane compressive strain, BCONGO [BCO grown on buffered NdGaO3 (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCOSTO, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCOSTO films with d = 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCONGO films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ~ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film.
Resumo:
The entanglement spectrum describing quantum correlations in many-body systems has been recently recognized as a key tool to characterize different quantum phases, including topological ones. Here we derive its analytically scaling properties in the vicinity of some integrable quantum phase transitions and extend our studies also to nonintegrable quantum phase transitions in one-dimensional spin models numerically. Our analysis shows that, in all studied cases, the scaling of the difference between the two largest nondegenerate Schmidt eigenvalues yields with good accuracy critical points and mass scaling exponents.
Resumo:
Novel diode test structures have been manufactured to characterize long-range dopant diffusion in tungsten silicide layers. A tungsten silicide to p-type silicon contact has been characterized as a Schottky barrier rectifying contact with a silicide work function of 4.8 eV. Long-range diffusion of boron for an anneal at 900 °C for 30 min has been shown to alter this contact to become ohmic. Long-range diffusion of phosphorus with a similar anneal alters the contact to become a bipolar n-p diode. Bipolar diode action is demonstrated experimentally for anneal schedules of 30 min at 900 °C, indicating long-range diffusion of phosphorus (~38 µm), SIMS analysis shows dopant redistribution is adversely affected by segregation to the silicide/oxide interface. The concept of conduit diffusion has been demonstrated experimentally for application in advanced bipolar transistor technology. © 2009 IEEE.