946 resultados para Feigenbaum number
Resumo:
A simple, but important three-atom model was proposed at the solid/liquid interface, leading to a new criterion number, lambda, governing the boundary conditions (BCs) in nanoscale. The solid wall is considered as the face-centered-cubic (fcc) structure. The fluid is the liquid argon with the well-known LJ potential. Based on the concept, the two micro-systems have the same BCs if they have The same criterion number. The degree of the locking BCs is enhanced when lambda equals to 0.757. Such critical criterion number results in the substantial epitaxial ordering and one, two, or even three liquid layers are locked by the solid wall, depending on the coupling energy scale ratio of the solid and liquid atoms. With deviation from the critical criterion number, the flow approaches the slip BCs and there are little ordering structures within the liquid. Always at the same criterion number, the degree of the slip is decreased or the locking is enhanced with increasing the coupling energy scale ratio of the solid and liquid atoms. The above analysis is well confirmed by the molecular dynamics (MD) simulation. The slip length is well correlated in terms of the new criterion number. The future work is suggested to extend the present theory for other microstructures of the solid wall atoms and quasi-LJ potentials.
Resumo:
This paper proposes a novel single electron random number generator (RNG). The generator consists of multiple tunneling junctions (MTJ) and a hybrid single electron transistor (SET)/MOS output circuit. It is an oscillator-based RNG. MTJ is used to implement a high-frequency oscillator,which uses the inherent physical randomness in tunneling events of the MTJ to achieve large frequency drift. The hybrid SET and MOS output circuit is used to amplify and buffer the output signal of the MTJ oscillator. The RNG circuit generates high-quality random digital sequences with a simple structure. The operation speed of this circuit is as high as 1GHz. The circuit also has good driven capability and low power dissipation. This novel random number generator is a promising device for future cryptographic systems and communication applications.
Resumo:
A critical Biot number, which determines both the sensitivity of spherical ceramics to quenching and the durations of the temperature-wave propagation and the thermal stresses in the ceramics subjected to thermal shock, is theoretically obtained. The results prove that once the Biot number of a ceramic sphere is greater than the critical number, its thermal shock failure will be such a rapid process that the failure only occurs in the initial regime of heat conduction, whereas the thermal shock failure of the ceramic sphere is uncertain in the course of heat conduction. The presented results provide a guide to the selection of the ceramics applied in the thermostructural engineering with thermal shock.
Resumo:
A universal Biot number, which not only describes the susceptibility of ceramic cylinders to quenching but also determines the duration that ceramic cylinders are subjected to thermal stress during thermal shock, is theoretically obtained. The analysis proves that thermal shock failure of ceramic cylinders with a Biot number greater than the critical value is a rapid process, which only occurs in the initial heat conduction regime. The results provide a guide to the selection of ceramic materials for thermostructural engineering, with particular reference to thermal shock.
Resumo:
Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migration of gas bubbles in an immiscible bulk liquid with a temperature gradient at moderate to large Marangoni number is simulated numerically. Constant material properties of the two phases are assumed. Steady state of the motion can always be reached. The terminal migration velocity decreases monotonously with the increase of the Marangoni number due to the wrapping of isotherms around the front surface of the bubble. Good agreements with space experimental data and previous theoretical and numerical studies in the literature are evident. Slight deformation of bubble is observed, but no distinct influence on the motion occurs. It is also found that the influence of the convective transport of heat inside bubbles cannot be neglected at finite Marangoni number, while the influence of the convective transport of momentum inside bubbles may be actually negligible.
Resumo:
In present study, the transition of thermocapillary convection from the axisymmetric stationary flow to oscillatory flow in liquid bridges of 5cst silicon oil (aspect ratio 1.0 and 1.6) is investigated in microgravity conditions by the linear instability analysis. The corresponding marginal instability boundary is closely related to the gas/liquid configuration of the liquid bridge noted as volume ratio. With the increasing volume ratio, the marginal instability boundary consists of the increasing branch and the decreasing branch. A gap region exists between the branches where the critical Marangoni number of the corresponding axisymmetric stationary flow increases drastically. Particularly, a unique axisymmetric oscillatory flow (the critical azimuthal wave number is m=0) in the gap region is reported for the liquid bridge of aspect ratio 1.6. Moreover, the energy transfer between the basic state and the disturbance fields of the thermocapillary convection is analyzed at the corresponding critical Marangoni number, which reveals different major sources of the energy transfer for the development of the disturbances in regimes of the increasing branch, the gap region and the decreasing branch, respectively.