1000 resultados para CNPQ::ENGENHARIAS::ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Resumo:
The use of Multiple Input Multiple Output (MIMO) systems has permitted the recent evolution of wireless communication standards. The Spatial Multiplexing MIMO technique, in particular, provides a linear gain at the transmission capacity with the minimum between the numbers of transmit and receive antennas. To obtain a near capacity performance in SM-MIMO systems a soft decision Maximum A Posteriori Probability MIMO detector is necessary. However, such detector is too complex for practical solutions. Hence, the goal of a MIMO detector algorithm aimed for implementation is to get a good approximation of the ideal detector while keeping an acceptable complexity. Moreover, the algorithm needs to be mapped to a VLSI architecture with small area and high data rate. Since Spatial Multiplexing is a recent technique, it is argued that there is still much room for development of related algorithms and architectures. Therefore, this thesis focused on the study of sub optimum algorithms and VLSI architectures for broadband MIMO detector with soft decision. As a result, novel algorithms have been developed starting from proposals of optimizations for already established algorithms. Based on these results, new MIMO detector architectures with configurable modulation and competitive area, performance and data rate parameters are here proposed. The developed algorithms have been extensively simulated and the architectures were synthesized so that the results can serve as a reference for other works in the area
Resumo:
This work has as main objective to find mathematical models based on linear parametric estimation techniques applied to the problem of calculating the grow of gas in oil wells. In particular we focus on achieving grow models applied to the case of wells that produce by plunger-lift technique on oil rigs, in which case, there are high peaks in the grow values that hinder their direct measurement by instruments. For this, we have developed estimators based on recursive least squares and make an analysis of statistical measures such as autocorrelation, cross-correlation, variogram and the cumulative periodogram, which are calculated recursively as data are obtained in real time from the plant in operation; the values obtained for these measures tell us how accurate the used model is and how it can be changed to better fit the measured values. The models have been tested in a pilot plant which emulates the process gas production in oil wells
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
The main hypothesis of this thesis is that the deve lopment of industrial automation applications efficiently, you need a good structuri ng of data to be handled. Then, with the aim of structuring knowledge involved in the contex t of industrial processes, this thesis proposes an ontology called OntoAuto that conceptua lly models the elements involved in the description of industrial processes. To validat e the proposed ontology, several applica- tions are presented. In the first, two typical indu strial processes are modeled conceptually: treatment unit DEA (Diethanolamine) and kiln. In th e second application, the ontology is used to perform a semantic filtering alarms, which together with the analysis of correla- tions, provides temporal relationships between alar ms from an industrial process. In the third application, the ontology was used for modeli ng and analysis of construction cost and operation processes. In the fourth application, the ontology is adopted to analyze the reliability and availability of an industrial plant . Both for the application as it involves costs for the area of reliability, it was necessary to create new ontologies, and OntoE- con OntoConf, respectivamentem, importing the knowl edge represented in OntoAuto but adding specific information. The main conclusions of the thesis has been that on tology approaches are well suited for structuring the knowledge of industrial process es and based on them, you can develop various advanced applications in industrial automat ion.
Resumo:
The humanity reached a time of unprecedented technological development. Science has achieved and continues to achieve technologies that allowed increasingly to understand the universe and the laws which govern it, and also try to coexist without destroying the planet we live on. One of the main challenges of the XXI century is to seek and increase new sources of clean energy, renewable and able to sustain our growth and lifestyle. It is the duty of every researcher engage and contribute in this race of energy. In this context, wind power presents itself as one of the great promises for the future of electricity generation . Despite being a bit older than other sources of renewable energy, wind power still presents a wide field for improvement. The development of new techniques for control of the generator along with the development of research laboratories specializing in wind generation are one of the key points to improve the performance, efficiency and reliability of the system. Appropriate control of back-to-back converter scheme allows wind turbines based on the doubly-fed induction generator to operate in the variable-speed mode, whose benefits include maximum power extraction, reactive power injection and mechanical stress reduction. The generator-side converter provides control of active and reactive power injected into the grid, whereas the grid-side converter provides control of the DC link voltage and bi-directional power flow. The conventional control structure uses PI controllers with feed-forward compensation of cross-coupling dq terms. This control technique is sensitive to model uncertainties and the compensation of dynamic dq terms results on a competing control strategy. Therefore, to overcome these problems, it is proposed in this thesis a robust internal model based state-feedback control structure in order to eliminate the cross-coupling terms and thereby improve the generator drive as well as its dynamic behavior during sudden changes in wind speed. It is compared the conventional control approach with the proposed control technique for DFIG wind turbine control under both steady and gust wind conditions. Moreover, it is also proposed in this thesis an wind turbine emulator, which was developed to recreate in laboratory a realistic condition and to submit the generator to several wind speed conditions.
Resumo:
Computational Intelligence Methods have been expanding to industrial applications motivated by their ability to solve problems in engineering. Therefore, the embedded systems follow the same idea of using computational intelligence tools embedded on machines. There are several works in the area of embedded systems and intelligent systems. However, there are a few papers that have joined both areas. The aim of this study was to implement an adaptive fuzzy neural hardware with online training embedded on Field Programmable Gate Array – FPGA. The system adaptation can occur during the execution of a given application, aiming online performance improvement. The proposed system architecture is modular, allowing different configurations of fuzzy neural network topologies with online training. The proposed system was applied to: mathematical function interpolation, pattern classification and selfcompensation of industrial sensors. The proposed system achieves satisfactory performance in both tasks. The experiments results shows the advantages and disadvantages of online training in hardware when performed in parallel and sequentially ways. The sequentially training method provides economy in FPGA area, however, increases the complexity of architecture actions. The parallel training method achieves high performance and reduced processing time, the pipeline technique is used to increase the proposed architecture performance. The study development was based on available tools for FPGA circuits.
Resumo:
The detection and diagnosis of faults, ie., find out how , where and why failures occur is an important area of study since man came to be replaced by machines. However, no technique studied to date can solve definitively the problem. Differences in dynamic systems, whether linear, nonlinear, variant or invariant in time, with physical or analytical redundancy, hamper research in order to obtain a unique solution . In this paper, a technique for fault detection and diagnosis (FDD) will be presented in dynamic systems using state observers in conjunction with other tools in order to create a hybrid FDD. A modified state observer is used to create a residue that allows also the detection and diagnosis of faults. A bank of faults signatures will be created using statistical tools and finally an approach using mean squared error ( MSE ) will assist in the study of the behavior of fault diagnosis even in the presence of noise . This methodology is then applied to an educational plant with coupled tanks and other with industrial instrumentation to validate the system.
Resumo:
About 10% of faults involving the electrical system occurs in power transformers. Therefore, the protection applied to the power transformers is essential to ensure the continuous operation of this device and the efficiency of the electrical system. Among the protection functions applied to power transformers, the differential protection appears as one of the main schemes, presenting reliable discrimination between internal faults and external faults or inrush currents. However, when using the low frequency components of the differential currents flowing through the transformer, the main difficulty of the conventional methods of differential protection is the delay for detection of the events. However, internal faults, external faults and other disturbances related to the transformer operation present transient and can be appropriately detected by the wavelet transform. In this paper is proposed the development of a wavelet-based differential protection for detection and identification of external faults to the transformer, internal faults, and transformer energizing by using the wavelet coefficient energy of the differential currents. The obtained results reveal the advantages of using of the wavelet transform in the differential protection compared to conventional protection, since it provides reliability and speed in detection of these events.
Resumo:
Software product line engineering promotes large software reuse by developing a system family that shares a set of developed core features, and enables the selection and customization of a set of variabilities that distinguish each software product family from the others. In order to address the time-to-market, the software industry has been using the clone-and-own technique to create and manage new software products or product lines. Despite its advantages, the clone-and-own approach brings several difficulties for the evolution and reconciliation of the software product lines, especially because of the code conflicts generated by the simultaneous evolution of the original software product line, called Source, and its cloned products, called Target. This thesis proposes an approach to evolve and reconcile cloned products based on mining software repositories and code conflict analysis techniques. The approach provides support to the identification of different kinds of code conflicts – lexical, structural and semantics – that can occur during development task integration – bug correction, enhancements and new use cases – from the original evolved software product line to the cloned product line. We have also conducted an empirical study of characterization of the code conflicts produced during the evolution and merging of two large-scale web information system product lines. The results of our study demonstrate the approach potential to automatically or semi-automatically solve several existing code conflicts thus contributing to reduce the complexity and costs of the reconciliation of cloned software product lines.
Resumo:
Técnicas de otimização conhecidas como as metaheurísticas tem conseguido resolversatisfatoriamente problemas conhecidos, mas desenvolvimento das metaheurísticas écaracterizado por escolha de parâmetros para sua execução, na qual a opção apropriadadestes parâmetros (valores). Onde o ajuste de parâmetro é essencial testa-se os parâmetrosaté que resultados viáveis sejam obtidos, normalmente feita pelo desenvolvedor que estaimplementando a metaheuristica. A qualidade dos resultados de uma instância1 de testenão será transferida para outras instâncias a serem testadas e seu feedback pode requererum processo lento de “tentativa e erro” onde o algoritmo têm que ser ajustado para umaaplicação especifica. Diante deste contexto das metaheurísticas surgiu a Busca Reativaque defende a integração entre o aprendizado de máquina dentro de buscas heurísticaspara solucionar problemas de otimização complexos. A partir da integração que a BuscaReativa propõe entre o aprendizado de máquina e as metaheurísticas, surgiu a ideia dese colocar a Aprendizagem por Reforço mais especificamente o algoritmo Q-learning deforma reativa, para selecionar qual busca local é a mais indicada em determinado instanteda busca, para suceder uma outra busca local que não pode mais melhorar a soluçãocorrente na metaheurística VNS. Assim, neste trabalho propomos uma implementação reativa,utilizando aprendizado por reforço para o auto-tuning do algoritmo implementado,aplicado ao problema do caixeiro viajante simétrico e ao problema escalonamento sondaspara manutenção de poços.
Resumo:
The fractal self-similarity property is studied to develop frequency selective surfaces (FSS) with several rejection bands. Particularly, Gosper fractal curves are used to define the shapes of the FSS elements. Due to the difficulty of making the FSS element details, the analysis is developed for elements with up to three fractal levels. The simulation was carried out using Ansoft Designer software. For results validation, several FSS prototypes with fractal elements were fabricated. In the fabrication process, fractals elements were designed using computer aided design (CAD) tools. The prototypes were measured using a network analyzer (N3250A model, Agilent Technologies). Matlab software was used to generate compare measured and simulated results. The use of fractal elements in the FSS structures showed that the use of high fractal levels can reduce the size of the elements, at the same time as decreases the bandwidth. We also investigated the effect produced by cascading FSS structures. The considered cascaded structures are composed of two FSSs separated by a dielectric layer, which distance is varied to determine the effect produced on the bandwidth of the coupled geometry. Particularly, two FSS structures were coupled through dielectric layers of air and fiberglass. For comparison of results, we designed, fabricated and measured several prototypes of FSS on isolated and coupled structures. Agreement was observed between simulated and measured results. It was also observed that the use of cascaded FSS structures increases the FSSs bandwidths and, in particular cases, the number of resonant frequencies, in the considered frequency range. In future works, we will investigate the effects of using different types of fractal elements, in isolated, multilayer and coupled FSS structures for applications on planar filters, high-gain microstrip antennas and microwave absorbers
Resumo:
Reverberation is caused by the reflection of the sound in adjacent surfaces close to the sound source during its propagation to the listener. The impulsive response of an environment represents its reverberation characteristics. Being dependent on the environment, reverberation takes to the listener characteristics of the space where the sound is originated and its absence does not commonly sounds like “natural”. When recording sounds, it is not always possible to have the desirable characteristics of reverberation of an environment, therefore methods for artificial reverberation have been developed, always seeking a more efficient implementations and more faithful to the real environments. This work presents an implementation in FPGAs (Field Programmable Gate Arrays ) of a classic digital reverberation audio structure, based on a proposal of Manfred Schroeder, using sets of all-pass and comb filters. The developed system exploits the use of reconfigurable hardware as a platform development and implementation of digital audio effects, focusing on the modularity and reuse characteristics
Resumo:
This work consists of the conception, developing and implementation of a Computational Routine CAE which has algorithms suitable for the tension and deformation analysis. The system was integrated to an academic software named as OrtoCAD. The expansion algorithms for the interface CAE genereated by this work were developed in FORTRAN with the objective of increase the applications of two former works of PPGEM-UFRN: project and fabrication of a Electromechanincal reader and Software OrtoCAD. The software OrtoCAD is an interface that, orinally, includes the visualization of prothetic cartridges from the data obtained from a electromechanical reader (LEM). The LEM is basically a tridimensional scanner based on reverse engineering. First, the geometry of a residual limb (i.e., the remaining part of an amputee leg wherein the prothesis is fixed) is obtained from the data generated by LEM by the use of Reverse Engineering concepts. The proposed core FEA uses the Shell's Theory where a 2D surface is generated from a 3D piece form OrtoCAD. The shell's analysis program uses the well-known Finite Elements Method to describe the geometry and the behavior of the material. The program is based square-based Lagragean elements of nine nodes and displacement field of higher order to a better description of the tension field in the thickness. As a result, the new FEA routine provide excellent advantages by providing new features to OrtoCAD: independency of high cost commercial softwares; new routines were added to the OrtoCAD library for more realistic problems by using criteria of fault engineering of composites materials; enhanced the performance of the FEA analysis by using a specific grid element for a higher number of nodes; and finally, it has the advantage of open-source project and offering customized intrinsic versatility and wide possibilities of editing and/or optimization that may be necessary in the future
Resumo:
Frequency Selective surfaces are increasingly common structures in telecommunication systems due to their geometric and electromagnetic advantages. As a matter of fact, the frequency selective surfaces with fractal geometry type would allow an even bigger reduction of the electrical length which provided greater flexibility in the design of these structures. In this work, we investigated the use of multifractal geometry in frequency selective surfaces. Three structures with different multifractal geometries have been proposed and analyzed. The first structure allowed the design of multiband structures with greater flexibility in controlling the resonant frequencies and bandwidth. The second structure provided a bandwidth increase even with the rising of the fractal level. The third structure showed response with angle stability, dual polarization and provided room for a bandwidth increase with the rising of the structural multifractality. Furthermore, the proposed structures increased the degree of freedom in the multiband designs because they have multiple resonant frequencies ratios between adjacent bands and are easy to deploy. The validation of the proposed structures was initially verified through simulations in Ansoft Designer software and then the structures were constructed and the experimental results obtained
Resumo:
This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments