997 resultados para Accumulation rate, benthic foraminiferal mass
Resumo:
Foraminiferal data were obtained from 66 samples of box cores on the southeastern Brazilian upper margin (between 23.8A degrees-25.9A degrees S and 42.8A degrees-46.13A degrees W) to evaluate the benthic foraminiferal fauna distribution and its relation to some selected abiotic parameters. We focused on areas with different primary production regimes on the southern Brazilian margin, which is generally considered as an oligotrophic region. The total density (D), richness (R), mean diversity (H) over bar', average living depth (ALD(X) ) and percentages of specimens of different microhabitats (epifauna, shallow infauna, intermediate infauna and deep infauna) were analyzed. The dominant species identified were Uvigerina spp., Globocassidulina subglobosa, Bulimina marginata, Adercotryma wrighti, Islandiella norcrossi, Rhizammina spp. and Brizalina sp.. We also established a set of mathematical functions for analyzing the vertical foraminiferal distribution patterns, providing a quantitative tool that allows correlating the microfaunal density distributions with abiotic factors. In general, the cores that fit with pure exponential decaying functions were related to the oligotrophic conditions prevalent on the Brazilian margin and to the flow of the Brazilian Current (BC). Different foraminiferal responses were identified in cores located in higher productivity zones, such as the northern and the southern region of the study area, where high percentages of infauna were encountered in these cores, and the functions used to fit these profiles differ appreciably from a pure exponential function, as a response of the significant living fauna in deeper layers of the sediment. One of the main factors supporting the different foraminiferal assemblage responses may be related to the differences in primary productivity of the water column and, consequently, in the estimated carbon flux to the sea floor. Nevertheless, also bottom water velocities, substrate type and water depth need to be considered.
Resumo:
Two experiments were carried out under greenhouse conditions to study the accumulation and distribution of dry mass and macronutrients in maize and Ipomoea hederifolia. Plants of both species had grown, separately, in pots with sand substrate and irrigation with nutrient solution. Treatments were represented by the times of evaluation, realized in intervals of 14 days, starting at 21 days after emergence (DAE). A maize plant showed slight growth up to 30 DAE, when dry mass allocation was higher in roots and leaves (80%); while an I. hederifolia plant, up to 50 DAE, when the allocation of dry mass was higher in offshoots and leaves (79). Dry mass accumulation was almost five times greater in maize (134 g per plant) than in I. hederifolia (29 g per plant). The average values of N and K contents were greater in I. hederifolia. Maximum accumulations of macronutrients by maize were 1,431; 474; 1,832; 594; 340, and 143 mg per plant, while by I. hederifolia, 727; 52; 810; 350; 148, and 65 mg per plant, for N, P, K, Ca, Mg, and S, respectively. Mean accumulation rate of dry mass and macronutrients by maize plants was crescent up to 87 DAE, reaching the maximum value at 103 DAE; while being crescent up to 121 DAE by I. hederifolia plants, reaching the maximum value at 138 DAE. Thus, beyond the interference on harvesting process, a population of I. hederifolia also can compete with maize crop for nutrients.
Resumo:
The objective of this study was to analyze the production of dry mass, forage accumulation rate and the structural composition of Brachiaria brizantha cv. Xaraes pastures, managed under different grazing heights in continuous stocking. The experimental area was 12 hectares, divided in paddocks of one hectare each. The treatments were 15, 30, 45 and 60 cm of defoliation heights. Nellore steers were used to reach the desired heights. Every 28 days four cut samples and eight visual samples were collected for comparative performance in the experimental plots. Two grazing exclusion cages were used per treatment to estimate accumulation rates kg.ha(-1) DM. The cut material was taken to the laboratory for separation of the botanical components (green leaf, stem and senescent material), weighing and determination of dry matter. The experimental design was the completely randomized with three replicates. There were treatments effects at all seasons for the production of total mass, except in the spring. In summer and spring seasons it was observed the highest values for leaf blades (1.100 kg DM.ha(-1)). In the winter, the highest values of senescent material was observed, as expected. The average accumulation showed no significant difference among the treatments, except for stem and total mass in the summer and stem in the fall. The tillers were heavier and higher values for number of green leaves per tiller occurred in the fall, but for senescent leaves per tiller ocurred in the winter. Swards grazed at heights between 45 and 60 cm of defoliation, had good production of forage mass and leaf constituent.
Resumo:
The rate at which hydrothermal precipitates accumulate, as measured by the accumulation rate of manganese, can be used to identify periods of anomalous hydrothermal activity in the past. From a preliminary study of Sites 597 and 598, four periods prior to 6 Ma of anomalously high hydrothermal activity have been identified: 8.5 to 10.5 Ma, 12 to 16 Ma, 17 to 18 Ma, and 23-to-27 Ma. The 18-Ma anomaly is the largest and is associated with the jump in spreading from the fossil Mendoza Ridge to the East Pacific Rise, whereas the 23-to-27-Ma anomaly is correlated with the birth of the Galapagos Spreading Center and resultant ridge reorganization. The 12-to-16-Ma and 8.5-to-10.5-Ma anomalies are correlated with periods of anomalously high volcanism around the rim of the Pacific Basin and may be related to other periods of ridge reorganization along the East Pacific Rise. There is no apparent correlation between periods of fast spreading at 19°S and periods of high hydrothermal activity. We thus suggest that periods when hydrothermal activity and crustal alteration at mid-ocean ridges are the most pronounced may be periods of large-scale ridge reorganization.
Resumo:
A 560-meter-thick sequence of Cenomanian through Pleistocene sediments cored at DSDP Site 462 in the Nauru Basin overlies a 500-meter-thick complex unit of altered basalt flows, diabase sills, and thin intercalated volcaniclastic sediments. The Upper Cretaceous and Cenozoic sediments contain a high proportion of calcareous fossils, although the site has apparently been below the calcite compensation depth (CCD) from the late Mesozoic to the Pleistocene. This fact and the contemporaneous fluctuations of the calcite and opal accumulation rates suggest an irregular influx of displaced pelagic sediments from the shallow margins of the basin to its center, resulting in unusually high overall sedimentation rates for such a deep (5190 m) site. Shallow-water benthic fossils and planktonic foraminifers both occur as reworked materials, but usually are not found in the same intervals of the sediment section. We interpret this as recording separate erosional interludes in the shallow-water and intermediate-water regimes. Lower and upper Cenozoic hiatuses also are believed to have resulted from mid-water events. High accumulation rates of volcanogenic material during Santonian time suggest a corresponding significant volcanic episode. The coincidence of increased carbonate accumulation rates during the Campanian and displacement of shallow-water fossils during the late Campanian-early Maestrichtian with the volcanic event implies that this early event resulted in formation of the island chains around the Nauru Basin, which then served as platforms for initial carbonate deposition.
Resumo:
The impact of an asteroid at the Cretaceous/Paleogene (K/Pg) boundary triggered dramatic biotic, biogeochemical and sedimentological changes in the oceans that have been intensively studied. Paleo-biogeographical differences in the biotic response to the impact and its environmental consequences, however, have been less well documented. We present a high-resolution analysis of benthic foraminiferal assemblages at Southern Ocean ODP Site 690 (Maud Rise, Weddell Sea, Antarctica). At this high latitude site, late Maastrichtian environmental variability was high, but benthic foraminiferal assemblages were not less diverse than at lower latitudes, in contrast to those of planktic calcifiers. Also in contrast to planktic calcifiers, benthic foraminifera did not suffer significant extinction at the K/Pg boundary, but show transient assemblage changes and decreased diversity. At Site 690, the extinction rate was even lower (~3%) than at other sites. The benthic foraminiferal accumulation rate varied little across the K/Pg boundary, indicating that food supply to the sea floor was affected to a lesser extent than at lower latitude sites. Compared to Maastrichtian assemblages, Danian assemblages have a lower diversity and greater relative abundance of heavily calcified taxa such as Stensioeina beccariiformis and Paralabamina lunata. This change in benthic foraminiferal assemblages could reflect post-extinction proliferation of different photosynthesizers (thus food for the benthos) than those dominant during the Late Cretaceous, therefore changes in the nature rather than in the amount of the organic matter supplied to the seafloor. However, severe extinction of pelagic calcifiers caused carbonate supersaturation in the oceans, thus might have given competitive advantage to species with large, heavily calcified tests. This indirect effect of the K/Pg impact thus may have influenced the deep-sea dwellers, documenting the complexity of the effects of major environmental disturbance.
Resumo:
Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal-upper abyssal (1500-2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time. At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms. The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers ("Strangelove Ocean Model") or to the collapse of the biotic pump ("Living Ocean Model").
Resumo:
Changes in the Southeast Asia monsoon winds and surface circulation patterns since the last glaciation are inferred using multiple paleoceanographic indicators including planktic foraminifer faunal abundances, fauna and alkenones sea-surface temperature (SST) estimates, oxygen and carbon isotopes of planktic and benthic foraminifers, and sedimentary fluxes of carbonates and organic carbon obtained from deep-sea core SCS90-36 from the South China Sea (SCS) (17°59.70'N, 111°29.64'E at water depth 2050 m). All these paleoceanographic evidences indicate marked changes in the SCS ocean system over the last glacial toward the Holocene. Planktic foraminiferal faunal SST estimates show stable warm-season SST of 28.6°C, close to the modern value, throughout the glacial-interglacial cycle. In contrast, cold-season SST increases gradually from 23.6°C in the last glacial to a mean value of 26.4°C in the Holocene with a fluctuation of about 3°C during 13-16 ka. SST estimates by UK'37 method reveal less variability and are in average 1-3°C lower than the fauna-derived winter-season SST. These patterns reveal that the seasonality of the SST is not only higher by about 3-4°C in the glacial, but also a function of the winter season SST. Sedimentation rates decrease from the last glacial-deglacial stage to the Holocene due to a reduction in supply of terrigenous components, which led to an increase of carbonate contents. Total organic carbon (TOC) contents of primarily marine sources decrease from the last glacial-deglacial to the Holocene. The last deglaciation is also characterized by high surface productivity as indicated by increased ketones abundances and high mass accumulation rates (MAR) of the TOC and carbonates. The gradient of planktic foraminifer ocygen and carbon isotopes of between surface dwellers and deep dwellers increases significantly toward Termination I and Holocene, and is indiscernibly small in the carbon isotope gradient of between 14 and 24 ka, revealing a deep-mixing condition in surface layers prior to 10 ka. The glacial-interglacial fluctuation of the carbon isotope value of a benthic foraminifer is 0.61%. which is significantly larger than a global mean value. The large carbon isotope fluctuation indicates an amplification of marginal-sea effects which is most likely resulted from an increase in surface productivity in the northern SCS during the last glacial-deglacial stage. The multiple proxies consistently indicate that the last glacial-deglacial stage winter monsoon in the Southeast Asia was probably strengthened in the northern SCS, leading to a development of deep-mixing surface layer conditions and a more efficient nutrient cycling which supports more marine organic carbon production.
Resumo:
Four long sediment cores from locations in the Framstrait, the Norwegian-Greenland Seas and the northern North Atlantic were analysed in a high resolution sampling mode (1 - 2 cm density) for their benthic foraminiferal content. In particular the impact of the intense climatic changes at glacial/interglacial transitions (terminations I and II) on the benthic community have been of special interest. The faunal data were investigated by means of multivariate analysis and represented in their chronological occurence. The most prominent species of benthic foraminifera in the Norwegian-Greenland Seas are Oridorsalis umbonatus, Cibicidoides wuellerstorfi, the group of Cassidulina, Pyrgo rotalaria, Globocassidulina subglobosa and fragmented tubes of arenaceous species. The climatic signal of termination I as well as termination II is recorded in the fossil foraminiferal tests as divided transition from glacial to interglacial. The elder INDAR maximum (individuals accumulation rate = individuals/sq cm * 1.000 y; Norwegian-Greenland Seas: average 3.000 - 6.000 individuals/sq cm * 1.000 y; northern North Atlantic: average 150 individuals/sq cm * 1.000 y) is followed by a period of decreased values. The second, younger maximum reaches comparable values as the elder maximum. The interglacial INDAR are in average 700 individuals/sq cm * 1.000 y in the Norwegian-Greenland Seas and 200 individuals/sq cm * 1.000 y in average in the northern North Atlantic. The occurence of the elder INDAR maximum shows a distinct chronological transgressivity between the northern North Atlantic (12.400 ybp.) and the Framstrait (8.900 ybp.). The time shift from south to north amounts 3.500 yrs., the average expanding velocity 0,78 km per year. Within the Norwegian-Greenland Seas the average expanding velocity amounts 0,48 km per year. This chronological transgressivity is interpreted as impact of the progressive expanding of the North Atlantic and the Norwegian Current during the deglaciation. The dynamic of the faunal development is defined as increasing INDAR per time. The elder INDAR maximum shows in both glacial/interglacial transitions an exponential increase from south to north. Termination II is characterized by a general higher dynamic as termination I. By means of the high resolution sampling density the impact of regional isotopic recognized melt-water events is recognized by an increase of endobenthic and t-ubiquitous species in the Norwegian-Greenland Seas sediments. During termination I the relative minimum between both INDAR maxima occur chronological with an decrease of calculated sea surface temperatures. This is interpreted as indication of the close pelagic - benthic coupling. The climatic signal in the northern North Atlantic recorded in the fossil benthic foraminiferal community shows a lower amplitude as in the Norwegian-Greenland Seas. The occurence of the epibenthic Cibicidoides wuellersforfi allows to evaluate the variability of the bottom water mass. In general at all core locations increasing lateral bottom currents are recognized with the occurence of the second younger INDAR maximum. In comparison with various paleo-climatological data sets fossil benthic foraminifers show a distinct koherence with changes of the atmospheric temperatures, the SSTs and the postglacial sea level increase. The benthic foraminiferal fauna is bound indirectly on and indicative for regional climatic changes, but principal dependent upon global climatic changes.
Resumo:
We examine the quantitative composition of benthic foraminiferal assemblages of Rose Bengal-stained surface samples from 37 stations in the Laptev Sea, and combine this data set with an existing data set along a transect from Spitsbergen to the central Arctic Ocean. Foraminiferal test accumulation rates, diversity, faunal composition and statistically defined foraminiferal associations are analysed for living (Rose Bengal-stained) and dead foraminifers. We compare the results of several benthic foraminiferal diversity indices and statistically defined foraminiferal associations, including Fisher's alpha and Shannon-Wiener diversity indices, Q-mode principal component analysis and correspondence analysis. Diversity and faunal density (standing stock) of living benthic foraminifers are positively correlated to trophic resources. In contrast, the accumulation rate of dead foraminifers (BFAR) shows fluctuating values depending on test disintegration processes. Foraminiferal associations defined by Q-mode principal component analysis and correspondence analysis are comparable. The factor values of the correspondence analysis allow a quantitative correlation between the foraminiferal fauna and the local carbon flux, which may be used as a tool to estimate changes in primary productivity.
Resumo:
Sixty surface sediment samples from the eastern South Atlantic Ocean including the Walvis Ridge, the Angola and Cape basins, and the Southwest African continental margin were analysed for their benthic foraminiferal content to unravel faunal distribution patterns and ecological preferences. Live (stained with Rose Bengal) and dead faunas were counted separately and then each grouped by Q-mode principal component analysis into seven principal faunal end-members. Then, multiple regression technique was used to correlate Recent assemblages with available environmental variables and to finally differentiate between four principal groups of environmental agents acting upon the generation of benthic foraminiferal assemblages: (1) seasonality of food supply and organic carbon flux rates, together with oxygen content in the pore and bottom waters; (2) lateral advection of deep-water masses; (3) bottom water carbonate corrosiveness; and (4) energetic state at the benthic boundary layer and grain size composition of the substrate. Food supply and corresponding dissolved oxygen contents in the pore and bottom waters turned out to be the most important factors which control the distribution pattern of the Recent benthic foraminifera. At the continental margin, in the zone of coastal upwelling and its mixing area, benthic foraminiferal assemblages are dominated by stenobathic high-productivity faunas, characterized by elevated standing stocks, low diversities and a large number of endobenthic living species. At the continental shelf and upper continental slope the live assemblages are characterized by Rectuvigerina cylindrica, Uvigerina peregrina s.1., Uvigerina auberiana and Rhizammina spp. while the dead assemblages are characterized by Cassidulina laevigata, Bolivina dilatata, Bulimina costata and B. mexicana. At the lower continental slope strong influence of high organic matter fluxes on the species composition is restricted to the area off the Cunene river mouth, where the live assemblage is dominated by Uvigerina peregrina s.1., the corresponding dead assemblage by Melonis barleeanum and M. zaandamae. In the adjacent areas of the lower continental slope the biocoenosis is characterized by Reophax bilocularis, and Epistominella exigua which becomes dominant in the corresponding dead assemblage. At the Walvis Ridge and in the abyssal Angola and Cape basins, where organic matter fluxes are low and highly seasonal, benthic foraminiferal assemblages reflect both the oligotrophic situation and the deep and bottom water mass configuration. The top and flanks of the Walvis Ridge are inhabited by the Rhizammina, Psammosphaera and R. bilocularis live assemblages, the corresponding dead assemblages are dominated by G. subglobosa on the ridge top and E. exigua on the flanks. Within the highly diverse E. exigua dead assemblage several associated epibenthic species coincide with the core of NADW between about 1600 and 3700 m water depth. These species include Osangularia culter, Cibicidoides kullenbergi, Melonis pompilioides, Bolivinita pseudothalmanni and Bulimina alazanensis. The assemblages of the abyssal Cape and Angola basins are characterized by Nuttallides umbonifer and a high proportion of agglutinated species. These species are adapted to very low organic matter fluxes and a carbonate corrosive environment.
Resumo:
A piston sediment core E017 from the middle-southern Okinawa Trough was investigated. A preliminary study of the deep-water evolution since 18 cal. ka BP was performed based on the quantitative census data of benthic foraminiferal fauna, together with planktonic foraminiferal oxygen and carbon isotope, AMS(14)C dating, and the previous results achieved in the southern Okinawa Trough. The result shows that the benthic fauna was dominated by Bulimina aculeata (d'Orbigny), Uvigerina peregrina (Cushman), Hispid Uvigerina and Uvigerina dirupta (Todd) during the glaciation-deglaciation before 9.2 cal. ka BP, while Epistominella exigua (Brady), Pullenia bulloides (d'Orbigny), Cibicidoides hyalina (Hofker), Sphaeroidina bulloides (d'Orbigny) and Globocassidulina subglobosa (Brady) predominated the fauna in the post-glacial period after 9.2 cal. ka BP. The benthic foraminifera accumulation rate (BFAR), paleoproductivity estimates and benthic foraminiferal assemblage conformably indicate that surface water paleoproductivity and organic matter flux during the glaciation-deglaciation were higher than those of the post-glacial period in the middle-southern Okinawa Trough, and gradually enhanced from the southern to the central Okinawa Trough during the glaciation-deglaciation, which could be caused by the discrepancy of the terrigenous nutrients supply. High abundances of E exigua, an indicator of pulsed organic matter input, after 9.2 cal. ka. BP may indicate that the intensity of seasonally riverine pulsed flux during the post-glacial period was stronger than that of the glaciation-deglaciation period, and the seasonal influx in the central trough might be stronger than in the south. The temporal distributions of the typical species indicating bottom water oxygen content and ventilation condition show that the ventilation of the bottom water during the post-glacial period is more active than the glaciation-deglaciation, which reflects that the evolution of the intermediate and deep waters of the northwestern Pacific during the last glaciation has no evident influence on the deep-water of the middle-southern Okinawa Trough. Additionally, the variations in agglutinated benthic foraminiferal abundance and other carbonate dissolution proxies indicate that carbonate dissolution gradually increased since the last 18 ka in the Okinawa Trough and rapidly enhanced at 9.2 cal. ka BP. The modern shallow carbonate lysocline could form at 3 cal. ka BP.