Geochemistry and foraminiferal stable isotoe record of sediment core SCS90-36


Autoria(s): Huang, Chen-Yue; Wu, Sheu-Feng; Zhao, Meixun; Chen, Min-Te; Wang, Chung-Ho; Tu, Xia; Yuan, Peter B
Cobertura

LATITUDE: 17.995000 * LONGITUDE: 111.494000

Data(s)

31/05/1997

Resumo

Changes in the Southeast Asia monsoon winds and surface circulation patterns since the last glaciation are inferred using multiple paleoceanographic indicators including planktic foraminifer faunal abundances, fauna and alkenones sea-surface temperature (SST) estimates, oxygen and carbon isotopes of planktic and benthic foraminifers, and sedimentary fluxes of carbonates and organic carbon obtained from deep-sea core SCS90-36 from the South China Sea (SCS) (17°59.70'N, 111°29.64'E at water depth 2050 m). All these paleoceanographic evidences indicate marked changes in the SCS ocean system over the last glacial toward the Holocene. Planktic foraminiferal faunal SST estimates show stable warm-season SST of 28.6°C, close to the modern value, throughout the glacial-interglacial cycle. In contrast, cold-season SST increases gradually from 23.6°C in the last glacial to a mean value of 26.4°C in the Holocene with a fluctuation of about 3°C during 13-16 ka. SST estimates by UK'37 method reveal less variability and are in average 1-3°C lower than the fauna-derived winter-season SST. These patterns reveal that the seasonality of the SST is not only higher by about 3-4°C in the glacial, but also a function of the winter season SST. Sedimentation rates decrease from the last glacial-deglacial stage to the Holocene due to a reduction in supply of terrigenous components, which led to an increase of carbonate contents. Total organic carbon (TOC) contents of primarily marine sources decrease from the last glacial-deglacial to the Holocene. The last deglaciation is also characterized by high surface productivity as indicated by increased ketones abundances and high mass accumulation rates (MAR) of the TOC and carbonates. The gradient of planktic foraminifer ocygen and carbon isotopes of between surface dwellers and deep dwellers increases significantly toward Termination I and Holocene, and is indiscernibly small in the carbon isotope gradient of between 14 and 24 ka, revealing a deep-mixing condition in surface layers prior to 10 ka. The glacial-interglacial fluctuation of the carbon isotope value of a benthic foraminifer is 0.61%. which is significantly larger than a global mean value. The large carbon isotope fluctuation indicates an amplification of marginal-sea effects which is most likely resulted from an increase in surface productivity in the northern SCS during the last glacial-deglacial stage. The multiple proxies consistently indicate that the last glacial-deglacial stage winter monsoon in the Southeast Asia was probably strengthened in the northern SCS, leading to a development of deep-mixing surface layer conditions and a more efficient nutrient cycling which supports more marine organic carbon production.

Formato

application/zip, 4 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.738493

doi:10.1594/PANGAEA.738493

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Huang, Chen-Yue; Wu, Sheu-Feng; Zhao, Meixun; Chen, Min-Te; Wang, Chung-Ho; Tu, Xia; Yuan, Peter B (1997): Surface ocean and monsoon climate variability in the south China Sea since last glaciation. Marine Micropaleontology, 32(1-2), 71-94, doi:10.1016/S0377-8398(97)00014-5

Palavras-Chave #Acc rate CaCO3; Acc rate TOC; Accumulation rate, calcium carbonate; Accumulation rate, total organic carbon; Age; AGE; Age, 14C AMS; Age, 14C calibrated; Age, dated; Age, dated standard deviation; Age dated; Age std dev; Alkenone, C37:3+C37:2; Alkenone, unsaturation index UK'37; C. wuellerstorfi d13C; C. wuellerstorfi d18O; C37 ketones concentration; CaCO3; Calcium carbonate; Calculated; Calculated, see reference(s); Calculated from UK'37 (Prahl et al., 1988); Carbon, organic, total; Cibicidoides wuellerstorfi, d13C; Cibicidoides wuellerstorfi, d18O; Depth; DEPTH, sediment/rock; G. menardii d13C; G. menardii d18O; G. sacculifer d13C; G. sacculifer d18O; GC; Globigerinoides sacculifer, d13C; Globigerinoides sacculifer, d18O; Globorotalia menardii, d13C; Globorotalia menardii, d18O; Gravity corer; K37; Mass spectrometer VG SIRA 10; SCS90-36; Sea surface temperature, annual mean; Sedimentation rate; Sed rate; see reference(s); SST (1-12); TOC; UK'37
Tipo

Dataset