854 resultados para sparse Bayesian regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peer-reviewed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Health and inequalities in health among inhabitants of European cities are of major importance for European public health and there is great interest in how different health care systems in Europe perform in the reduction of health inequalities. However, evidence on the spatial distribution of cause-specific mortality across neighbourhoods of European cities is scarce. This study presents maps of avoidable mortality in European cities and analyses differences in avoidable mortality between neighbourhoods with different levels of deprivation. Methods: We determined the level of mortality from 14 avoidable causes of death for each neighbourhood of 15 large cities in different European regions. To address the problems associated with Standardised Mortality Ratios for small areas we smooth them using the Bayesian model proposed by Besag, York and Mollié. Ecological regression analysis was used to assess the association between social deprivation and mortality. Results: Mortality from avoidable causes of death is higher in deprived neighbourhoods and mortality rate ratios between areas with different levels of deprivation differ between gender and cities. In most cases rate ratios are lower among women. While Eastern and Southern European cities show higher levels of avoidable mortality, the association of mortality with social deprivation tends to be higher in Northern and lower in Southern Europe. Conclusions: There are marked differences in the level of avoidable mortality between neighbourhoods of European cities and the level of avoidable mortality is associated with social deprivation. There is no systematic difference in the magnitude of this association between European cities or regions. Spatial patterns of avoidable mortality across small city areas can point to possible local problems and specific strategies to reduce health inequality which is important for the development of urban areas and the well-being of their inhabitants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After publication of this work in 'International Journal of Health Geographics' on 13 january 2011 was wrong. The map of Barcelona in Figure two (figure 1 here) was reversed. The final correct Figure is presented here

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates performance persistence among the equity funds investing in Russia during 2003-2007. Fund performance is measured using several methods including the Jensen alpha, the Fama-French 3- factor alpha, the Sharpe ratio and two of its variations. Moreover, we apply the Bayesian shrinkage estimation in performance measurement and evaluate its usefulness compared with the OLS 3-factor alphas. The pattern of performance persistence is analyzed using the Spearman rank correlation test, cross-sectional regression analysis and stacked return time series. Empirical results indicate that the Bayesian shrinkage estimates may provide better and more accurate estimates of fund performance compared with the OLS 3-factor alphas. Secondly, based on the results it seems that the degree of performance persistence is strongly related to length of the observation period. For the full sample period the results show strong signs of performance reversal whereas for the subperiod analysis the results indicate performance persistence during the most recent years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mathematical modeling the estimation of the model parameters is one of the most common problems. The goal is to seek parameters that fit to the measurements as well as possible. There is always error in the measurements which implies uncertainty to the model estimates. In Bayesian statistics all the unknown quantities are presented as probability distributions. If there is knowledge about parameters beforehand, it can be formulated as a prior distribution. The Bays’ rule combines the prior and the measurements to posterior distribution. Mathematical models are typically nonlinear, to produce statistics for them requires efficient sampling algorithms. In this thesis both Metropolis-Hastings (MH), Adaptive Metropolis (AM) algorithms and Gibbs sampling are introduced. In the thesis different ways to present prior distributions are introduced. The main issue is in the measurement error estimation and how to obtain prior knowledge for variance or covariance. Variance and covariance sampling is combined with the algorithms above. The examples of the hyperprior models are applied to estimation of model parameters and error in an outlier case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper sets out to identify the initial positions of the different decisionmakers who intervene in a group decision making process with a reducednumber of actors, and to establish possible consensus paths between theseactors. As a methodological support, it employs one of the most widely-knownmulticriteria decision techniques, namely, the Analytic Hierarchy Process(AHP). Assuming that the judgements elicited by the decision makers follow theso-called multiplicative model (Crawford and Williams, 1985; Altuzarra et al.,1997; Laininen and Hämäläinen, 2003) with log-normal errors and unknownvariance, a Bayesian approach is used in the estimation of the relative prioritiesof the alternatives being compared. These priorities, estimated by way of themedian of the posterior distribution and normalised in a distributive manner(priorities add up to one), are a clear example of compositional data that will beused in the search for consensus between the actors involved in the resolution ofthe problem through the use of Multidimensional Scaling tools

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses the possibilities provided by the regression-based inequality decomposition (Fields, 2003) to explore the contribution of different explanatory factors to international inequality in CO2 emissions per capita. In contrast to previous emissions inequality decompositions, which were based on identity relationships (Duro and Padilla, 2006), this methodology does not impose any a priori specific relationship. Thus, it allows an assessment of the contribution to inequality of different relevant variables. In short, the paper appraises the relative contributions of affluence, sectoral composition, demographic factors and climate. The analysis is applied to selected years of the period 1993–2007. The results show the important (though decreasing) share of the contribution of demographic factors, as well as a significant contribution of affluence and sectoral composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the UV-visible spectral region of solar light. The advantages of this technique includes a good vertical resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are currently several satellite instruments continuously scanning the atmosphere and measuring the UVvisible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS) launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur during daytime occultation measurements. The global coverage of the satellite measurements is far better than any other ozone measurement technique, but still the measurements are sparse in the spatial domain. Measurements are also repeated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes dynamically. Assimilation methods are therefore needed in order to combine the information of the measurements with the atmospheric model. In recent years, the focus of assimilation algorithm research has turned towards filtering methods. The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty of the measurements, but also the uncertainty of the evolution model of the system. However, the computational cost of full blown EKF increases rapidly as the number of the model parameters increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimilation problem. The work in this thesis is devoted to the development of inversion methods for satellite instruments and the development of assimilation methods used with atmospheric models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetylation was performed to reduce the polarity of wood and increase its compatibility with polymer matrices for the production of composites. These reactions were performed first as a function of acetic acid and anhydride concentration in a mixture catalyzed by sulfuric acid. A concentration of 50%/50% (v/v) of acetic acid and anhydride was found to produced the highest conversion rate between the functional groups. After these reactions, the kinetics were investigated by varying times and temperatures using a 3² factorial design, and showed time was the most relevant parameter in determining the conversion of hydroxyl into carbonyl groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical curves are normally obtained from discrete data by least squares regression. The least squares regression of data involving significant error in both x and y values should not be implemented by ordinary least squares (OLS). In this work, the use of orthogonal distance regression (ODR) is discussed as an alternative approach in order to take into account the error in the x variable. Four examples are presented to illustrate deviation between the results from both regression methods. The examples studied show that, in some situations, ODR coefficients must substitute for those of OLS, and, in other situations, the difference is not significant.