977 resultados para chaotic dynamical systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power, as that provided by a DC motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a non-ideal problem. In this work, we considerer two non-ideal problems analyzed by using numerical simulations. The existence of the Sommerfeld effect was verified, that is, the effect of getting stuck at resonance (energy imparted to the DC motor being used to excite large amplitude motions of the supporting structure). We considered two kinds of non-ideal problem: one related to the transverse vibrations of a shaft carrying two disks and another to a piezoceramic bar transducer powered by a vacuum tube generated by a non-ideal source Copyright © 2007 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a mathematical model is derived via Lagrange's Equation for a shear building structure that acts as a foundation of a non-ideal direct current electric motor, controlled by a mass loose inside a circular carving. Non-ideal sources of vibrations of structures are those whose characteristics are coupled to the motion of the structure, not being a function of time only as in the ideal case. Thus, in this case, an additional equation of motion is written, related to the motor rotation, coupled to the equation describing the horizontal motion of the shear building. This kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure is reached, the better part of this energy is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. If additional increase steps in voltage are made, one may reach a situation where the rotor will jump to higher rotation regimes, no steady states being stable in between. As a device of passive control of both large amplitude vibrations and the Sommerfeld effect, a scheme is proposed using a point mass free to bounce back and forth inside a circular carving in the suspended mass of the structure. Numerical simulations of the model are also presented Copyright © 2007 by ASME.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamical system investigated in this work is a nonlinear flexible beam-like structure in slewing motion. Non-dimensional and perturbed governing equations of motion are presented. The analytical solution for the linear part of these perturbed equations for ideal and for non-ideal cases are obtained. This solution is necessary for the investigation of the complete weak nonlinear problem where all nonlinearities are small perturbations around a linear known solution. This investigation shall help the analyst in the modelling of dynamical systems with structure- actuator interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we propose a model for the destruction of three-dimensional horseshoes via heterodimensional cycles. This model yields some new dynamical features. Among other things, it provides examples of homoclinic classes properly contained in other classes and it is a model of a new sort of heteroclinic bifurcations we call generating. © 2008 Cambridge University Press.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let (X, d) be a compact metric space and f: X → X a continuous function and consider the hyperspace (K(X), H) of all nonempty compact subsets of X endowed with the Hausdorff metric induced by d. Let f̄: K(X) → K (X) be defined by f̄(A) = {f(a)/a ∈ A} the natural extension of f to K(X), then the aim of this work is to study the dynamics of f when f is turbulent (erratic, respectively) and its relationships.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a load transport system in platforms is considered. It is a transport device and is modelled as an inverted pendulum built on a car driven by a DC motor. The motion equations were obtained by Lagrange's equations. The mathematical model considers the interaction between the DC motor and the dynamic system. The dynamic system was analysed and a Swarm Control Design was developed to stabilize the model of this load transport system. ©2010 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motivated by return maps near saddles for three-dimensional flows and also by return maps in the torus associated to Cherry flows, we study gap maps with derivative positive and smaller than one outside the discontinuity point. We prove that the lamination of infinitely renormalizable maps (or else maps with irrational rotation numbers) has analytic leaves in a natural subset of a Banach space of analytic maps of this kind. With maps having Hölder continuous derivative and derivative bounded away from zero, we also prove Hölder continuity of holonomies of the lamination and also of conjugacies between maps having the same combinatorics. © 2011 Springer Basel AG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We provide some properties for absolutely continuous functions in time scales. Then we consider a class of dynamical inclusions in time scales and extend to this class a convergence result of a sequence of almost inclusion trajectories to a limit which is actually a trajectory of the inclusion in question. We also introduce the so called Euler solution to dynamical systems in time scales and prove its existence. A combination of the existence of Euler solutions with the compactness type result described above ensures the existence of an actual trajectory for the dynamical inclusion when the setvalued vector field is nonempty, compact, convex and has closed graph. © 2012 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we study the periodic solutions, their stability and bifurcation for the class of Duffing differential equation mathematical equation represented where C > 0, ε > 0 and Λ are real parameter, A(t), b(t) and h(t) are continuous T periodic functions and ε is sufficiently small. Our results are proved using the averaging method of first order.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we analyze the convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain with highly oscillatory behavior. We consider the case where the height of the domain, amplitude and period of the oscillations are all of the same order, and given by a small parameter e > 0. Using an appropriate corrector approach, we show strong convergence and give error estimates when we replace the original solutions by the first-order expansion through the Multiple-Scale Method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we prove a stability result about the asymptotic dynamics of a perturbed nonautonomous evolution equation in ℝn governed by a maximal monotone operator. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is mainly devoted to the study of the limit cycles that can bifurcate from a linear center using a piecewise linear perturbation in two zones. We consider the case when the two zones are separated by a straight line Σ and the singular point of the unperturbed system is in Σ. It is proved that the maximum number of limit cycles that can appear up to a seventh order perturbation is three. Moreover this upper bound is reached. This result confirms that these systems have more limit cycles than it was expected. Finally, center and isochronicity problems are also studied in systems which include a first order perturbation. For the latter systems it is also proved that, when the period function, defined in the period annulus of the center, is not monotone, then it has at most one critical period. Moreover this upper bound is also reached.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)