913 resultados para TiO2 underlayer
Resumo:
A polpa celulósica da madeira deve ser branqueada e alvejada para atingir elevado valor comercial. O cloro é muito eficiente no branqueamento da polpa obtida por processo químico, mas também produz subprodutos altamente poluentes e tóxicos. Outros produtos químicos de branqueamento têm sido propostos para reduzir a toxicidade, mas são mais caros e menos versáteis. A fotodegradação catalítica com o uso de radiação ultravioleta (UV) foi feita para avaliar o potencial de redução do teor de poluentes encontrados em um efluente de branqueamento de celulose com o uso de cloro. A polpa celulósica de Pinus taeda foi produzida e branqueada em laboratório. Três litros de efluente receberam 3 g de dióxido de titânio (TiO2) e foram submetidos à radiação UV. Essa radiação foi produzida com o uso da ampola de lâmpada de vapor de mercúrio de alta pressão de 250 W (12.500 Lm) durante 240 min. A fotodegradação a 25 ºC por 240 min com UV reduziu em cerca de 43% a cor, 40% a DBO5, 50% a DQO, 40% de material calcinável e 45% do carbono orgânico total, além de baixar a toxicidade LC50 para o efluente tratado. O bioindicador Artemia salina apresentou o tempo de sobrevida maior do que 1.000% para o efluente tratado. A distribuição dos pontos experimentais de 0 a 240 min sugere que a fotodegradação deveria ser estendida. Assim, a redução de poluentes observada sugere que esse processo oxidativo avançado (POA), com fotocatálise com o uso de UV e TiO2, pode ser conveniente para o tratamento de efluentes clorados de branqueamento. Isso pode viabilizar o uso seguro de branqueamento com cloro.
Resumo:
Fotokatalyysillä tarkoitetaan spontaania kemiallista reaktiota, joka tapahtuu fotokatalyytin absorboidessa valoa. Reaktio voi tapahtua joko katalyytin pinnalla tai sen läheisyydessä, mutta fotokatalyytti pysyy reaktiossa muuttumattomana. Ominaisuuksiltaan paras ja eniten tutkittu fotokatalyyttinen materiaali on titaanidioksidi, jolla on säteilytettynä kyky hajottaa orgaanisia molekyylejä hiilidioksidiksi ja vedeksi. Fotokatalyysin käyttömahdollisuuksia tutkitaan membraanikalvojen puhdistamisessa kalvojen käyttöiän ja erotustehokkuuden parantamiseksi. Nykyisin kalvojen puhdistamiseen käytetään useimmiten kemiallista pesua, jonka tuloksena on usein haitallisia yhdisteitä sisältävä liuos. Fotokatalyyttinen puhdistus voisi olla ratkaisu ongelmaan, sillä sen avulla voitaisiin puhdistamisessa käytettävien kemikaalien ja siinä muodostuvien jätteiden määrää vähentää. Tämän työn kokeellisessa osassa tutkittiin polyvinyylideenifluoridikalvon (PVDF) kestävyyttä ja puhdistumista fotokatalyyttisissä reaktioissa. PVDF:n on todettu olevan erinomainen kalvomateriaali, koska se on termisesti stabiili ja se kestää hyvin kemikaaleja, kuten orgaanisia liuottimia, happoja ja emäksiä. Työssä todettiin PVDF-kalvon puhdistuvan UV/TiO2-käsittelyn avulla. Kalvo puhdistui parhaiten, kun käytettiin 0,425 m- % TiO2-liuosta. Puhdistumista havainnoitiin sekä puhtaan veden vuon mittauksilla että värjäämällä käsiteltyjä kalvoja ja mittaamalla niiden värinintensiteetti.
Resumo:
Tämä kandidaatintyö käsittelee rasva-aerosolien vähentämistä liesituulettimissa ultraviolettivalon (UV) ja titaanioksidin avulla (TiO2). Työssä käsitellään rasva-aerosolien aiheuttamia haittoja julkisissa keittiöissä ja liesituulettimen merkitystä rasva-aerosolipitoisuuksiin. Työn tavoitteena on selvittää, miten rasva-aerosolit käyttäytyvät kun niitä suodatetaan UV-valon ja TiO2-katalyytin avulla. Työssä myös pohditaan onko UV/TiO2-menetelmä tehokas liesituulettimen rasvan vähentäjä.
Resumo:
The evolution of our society is impossible without a constant progress in life-important areas such as chemical engineering and technology. Innovation, creativity and technology are three main components driving the progress of chemistry further towards a sustainable society. Biomass, being an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even transportation fuels, captures progressively new positions in the area of chemical technology. Knowledge of heterogeneous catalysis and chemical technology applied to transformation of biomass-derived substances will open doors for a sustainable economy and facilitates the discovery of novel environmentally-benign processes which probably will replace existing technologies in the era of biorefinary. Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixedbed reactor. An advanced analytical approach was developed in order to identify reaction products and reaction intermediates in the APR of polyols. The influence of the substrate structure on the product formation and selectivity in the APR reaction was also investigated, showing that the yields of the desired products varied depending on the substrate chain length. Additionally, the influence of bioethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced explaining the formation of products and key intermediates. The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and catalytic data was established. The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to monometallic Pt. On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was performed. The developed model was proven to successfully describe experimental data on APR of sorbitol with good accuracy.
Resumo:
Förståelse av olika ytors vätningsegenskaper är viktig i många pappers-relaterade industriella processer eftersom vätningen påverkar materialbeteendet, t.ex. vid bestrykning, tryckning och laminering. Förmågan att kontrollera vätningen är av intresse, därför att den ger nya möjligheter till modifikation av ytor. Vätningen styrs av ytans struktur och kemi. Kunskap om dessa egenskaper krävs både i fundamentala studier och för industriella applikationer. Nanopartiklar används ofta för att skapa funktionella ytor med mångsidiga egenskaper. Detta arbete strävar till att förstå de fysikalisk-kemiska egenskaperna hos papper och kartong som är bestrukna med nanopartiklar, för att sedan kunna förklara de observerade förändringarna i ytornas vätningsförmåga. Funktionella ytor med justerbar vätningsförmåga tillverkades genom att deponera nanopartiklar i en rulle-till-rulle vätskeflammasprutningprocess (LFS). TiO2 -nanopartikelbeläggningen skapar en superhydrofob yta som har över 160° kontaktvinkelmed vatten, medan SiO2-nanopartikelbeläggningar skapar mycket hydrofila ytor med kontaktvinklar så låga som 21° med vatten. Superhydrofobiciteten eller hydrofiliteten är ett resultat av den kombinerade effekten hos ytstrukturen och ytkemin, såsom nanopartiklarnas oxidationsnivå eller karbonatiseringsnivå. Kartongytor som är bestrukna med TiO2-nanopartiklar kan vara såväl superhydrofoba som hydrofila. Hydrofilitet kan induceras genom UVA-strålning, medan behandling i hög temperatur i ugn resulterar i en superhydrofob yta. Ett mål med arbetet var att förstå mekanismerna hos de kemiska för ändringar som sker under UVA-bestrålning och värmebehandling av ytor, bestrukna med TiO2-nanopartiklar. Ytornas abrasions- och kompressionsmotstånd samt relaterade förändringar i funktionella egenskaper undersöktes. Resultaten skapar en bättre förståelse för potentiell användning av LFS-nanopartikelbeläggningar i pappersrelaterade applikationer. En förståelse för stabiliteten hos nanopartikelbeläggningarna när de exponeras för externa krafter är viktig för att försäkra deras funktionalitet i industriella applikationer och för att garantera beläggningarnas miljö-, hälso- och säkerhetsaspekter. ------------------------------------------ Pinnan kastumisominaisuuksien hallinta on tärkeää monissa paperiteollisuuden prosesseissa, sillä pinnan kastuminen vaikuttaa esimerkiksi päällystämiseen, painamiseen ja laminointiin. Pinnan kastuvuuden säätäminen avaa mielenkiintoisia uusia mahdollisuuksia pintojen ominaisuuksien hallintaan. Pinnan kastuvuus määräytyy pinnan rakenteesta ja kemiasta, ja näiden ominaisuuksien ymmärtäminen on tärkeää sekä perustutkimuksessa että teollisissa sovelluksissa. Nanopartikkeleita käytetään usein toiminnallisten ja hallitusti kastuvien pintojen aikaansaamiseksi. Tässä työssä on tarkasteltu nanopartikkelipinnoitetun paperin ja kartongin fysikaalis-kemiallisia pintaominaisuuksia, jotka selittävät havaittuja muutoksia pinnan kastuvuudessa. Toiminnalliset pinnat säädettävillä kastuvuusominaisuuksilla valmistettiin nesteliekkiruiskutus (LFS) nanopartikkelipinnoituksella rullalta rullalle-menetelmällä. TiO2-nanopartikkelipäällystys saa aikaan superhydrofobisen pinnan, jonka veden kontaktikulma on suurempi kuin 160°. Toisaalta SiO2-nanopartikkelipäällystys muuttaa pinnan hyvin hydrofiiliseksi, veden kontaktikulman ollessa vain 21°. Pinnan superhydrofobisuus tai hydrofiilisyys riippuu nanopartikkelipinnan rakenteesta ja pintakemiasta kuten pinnan hapettumisasteesta ja hiilipitoisuudesta. TiO2-nanopartikkelipinnoitetun kartonkipinnan kastumista voidaan säätää superhydrofobisen ja hydrofiilisen välillä. Pinnan hydrofiilisyys saadaan aikaan UVA-valolla, kun taas superhydrofobinen pinta voidaan palauttaa korkeassa lämpötilassa uunissa. Tämän työn tavoitteena oli selvittää, millaisia muutoksia TiO2-nanopartikkelipäällystetyn pinnan kemiassa tapahtuu UVA-valon ja lämpökäsittelyn vaikutuksesta. Työssä tarkasteltiin myös pinnan mekaanisen hankauksen ja kokoonpuristuksen vaikutusta toiminnallisiin ominaisuuksiin. Työssä saavutetut tulokset auttavat ymmärtämään LFS-nanopartikkelipäällystettyjen pintojen soveltuvuutta paperiin liittyvissä sovelluksissa. Nanopartikkelipäällystettyjen pintojen stabiilius ulkoisten voimien alaisena on tärkeää toiminnallisten päällystysten ympäristö-, terveys- ja turvallisuusnäkökulmia tarkasteltaessa.
Resumo:
The decreasing fossil fuel resources combined with an increasing world energy demand has raised an interest in renewable energy sources. The alternatives can be solar, wind and geothermal energies, but only biomass can be a substitute for the carbon–based feedstock, which is suitable for the production of transportation fuels and chemicals. However, a high oxygen content of the biomass creates challenges for the future chemical industry, forcing the development of new processes which allow a complete or selective oxygen removal without any significant carbon loss. Therefore, understanding and optimization of biomass deoxygenation processes are crucial for the future bio–based chemical industry. In this work, deoxygenation of fatty acids and their derivatives was studied over Pd/C and TiO2 supported noble metal catalysts (Pt, Pt–Re, Re and Ru) to obtain future fuel components. The 5 % Pd/C catalyst was investigated in semibatch and fixed bed reactors at 300 °C and 1.7–2 MPa of inert and hydrogen–containing atmospheres. Based on extensive kinetic studies, plausible reaction mechanisms and pathways were proposed. The influence of the unsaturation in the deoxygenation of model compounds and industrial feedstock – tall oil fatty acids – over a Pd/C catalyst was demonstrated. The optimization of the reaction conditions suppressed the formation of by–products, hence high yields and selectivities towards linear hydrocarbons and catalyst stability were achieved. Experiments in a fixed bed reactor filled with a 2 % Pd/C catalyst were performed with stearic acid as a model compound at different hydrogen–containing gas atmospheres to understand the catalyst stability under various conditions. Moreover, prolonged experiments were carried out with concentrated model compounds to reveal the catalyst deactivation. New materials were proposed for the selective deoxygenation process at lower temperatures (~200 °C) with a tunable selectivity to hydrodeoxygenation by using 4 % Pt/TiO2 or decarboxylation/decarbonylation over 4 % Ru/TiO2 catalysts. A new method for selective hydrogenation of fatty acids to fatty alcohols was demonstrated with a 4 % Re/TiO2 catalyst. A reaction pathway and mechanism for TiO2 supported metal catalysts was proposed and an optimization of the process conditions led to an increase in the formation of the desired products.
Resumo:
Diplomityö tehtiin Suomen Sokeri Oy:n vesilaitokselle Vihreän Kemian laboratoriossa. Prosessia tarkasteltiin saostuksen osalta ja tavoitteena oli sen kehittäminen esihapetusmenetelmän tai saostuskemikaalin vaihdon avulla. Tarkastelu tehtiin orgaanisen, kiintoaineksen ja metallien poiston, desinfiointitehon sekä ympäristöystävällisyyden osalta. Potentiaalisia esihapetusmenetelmiä (kaliumpermanganaatti, vetyperoksidi, valokemiallinen, H2O2/UV, valokatalyyttinen, TiO2/UV, H2O2/ultraääni sekä esihapetus peretikkahapolla) tarkasteltiin eri pitoisuuksilla ja tehoilla laboratoriomittakaavassa jar-testin avulla. Saostustehoa testattiin alumiinikloridilla ja ferrisulfaatilla. Raakaveden laadun muutoksia eri vaiheissa seurattiin laboratorioanalyysein. Hapetusmenetelmien desinfiointiteho, vaikutukset syanobakteereihin ja -toksiineihin sekä reaktioissa syntyvät sivutuotteet kartoitettiin teorian perusteella. Työn tuloksien perusteella kaliumpermanganatti, vetyperoksidi erityisesti kehittyneenä hapetustekniikkana sekä valokatalyyttinen menetelmä tehostivat vedenkäsittelyä, mutta koska TiO2/UV- tai ultraäänihapetukselle ei ole vielä olemassa kaupallista sovellusta laitosmittakaavassa niin suositeltavat menetelmät ovat KMnO4- ja H2O2(/UV)-hapetukset jatkotutkimussuositukset huomioiden. Peretikkahappo ei tämän tutkimuksen perusteella vaikuttanut suositeltavalta hapetusmenetelmältä, mutta sen sijaan teorian perusteella potentiaaliselta desinfektioaineelta myös talousvedenpuhdistukseen. Opinnäytetyötä eri hapetusmenetelmien osalta talousvedelle ei ole aiemmin tehty eikä peretikkahappohapetuksesta ole laajalti aiempaa tutkimustietoa. Kokeellisen osuuden tulokset antavat uutta tietoa menetelmien soveltuvuudesta vastaaville laitoksille.
Resumo:
No tratamento de couro bovino para a produção de gelatina utiliza-se uma solução de soda cáustica com função de dissolver substâncias orgânicas indesejáveis, como proteínas e gorduras. Para evitar seu descarte como efluente, procurou-se viabilizar um processo de purificação da soda cáustica, evitando seu desperdício e ainda tornando-o adequado para reutilização no processo. A microfiltração, a ultrafiltração e a nanofiltração são técnicas potenciais para esta separação, dependendo do tipo e tamanho dos sólidos existentes. Experimentos de ultrafiltração foram realizados na unidade de micro/ultrafiltração Koch Membrane System Model Protosep modified IV, nas pressões transmembrana de 2,5; 3,5 e 4,5 kgf/cm² e temperaturas de 25 e 50 °C. Utilizaram-se membranas cerâmicas (material TiO2/alfa-Al2O3) tubulares com diâmetro médio de corte de 0,01, 0,05 e 0,10 µm. O trabalho foi dividido em duas etapas: na primeira selecionou-se a melhor pressão para cada membrana, e na segunda adotou-se a pressão de 3,5 kgf/cm², usou-se uma alimentação centrifugada e outra peneirada para então definir a membrana. As melhores condições operacionais foram determinadas em termos de fluxo de permeado e qualidade de produto. Com os resultados obtidos, observaram-se as melhores condições operacionais: pressão de 3,5 kgf/cm², temperatura de 25 °C e membrana com diâmetro médio de poros de 0,01 µm.
Resumo:
For advanced devices in the application fields of data storage, solar cell and biosensing, one of the major challenges to achieve high efficiency is the fabrication of nanopatterned metal oxide surfaces. Such surfaces often require both precise structure at the nanometer scale and controllable patterned structure at the macro scale. Nowadays, the dominating candidates to fabricate nanopatterned surfaces are the lithographic technique and block-copolymer masks, most of which are unfortunately costly and inefficient. An alternative bottom-up approach, which involves organic/inorganic self-assembly and dip-coating deposition, has been studied intensively in recent years and has proven to be an effective technique for the fabrication of nanoperforated metal oxide thin films. The overall objective of this work was to optimize the synthesis conditions of nanoperforated TiO2 (NP-TiO2) thin films, especially to be compatible with mixed metal oxide systems. Another goal was to develop fabrication and processing of NP-TiO2 thin films towards largescale production and seek new applications for solar cells and biosensing. Besides the traditional dip-coating and drop-casting methods, inkjet printing was used to prepare thin films of metal oxides, with the advantage of depositing the ink onto target areas, further enabling cost-effective fabrication of micro-patterned nanoperforated metal oxide thin films. The films were characterized by water contact angle determination, Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Grazing Incidence XRay Diffraction. In this study, well-ordered zinc titanate nanoperforated thin films with different Zn/Ti ratios were produced successfully with zinc precursor content up to 50 mol%, and the dominating phase was Zn2Ti3O8. NP-TiO2 structures were also obtained by a cost-efficient means, namely inkjet printing, at both ambient temperature and 60 °C. To further explore new biosensing applications of nanoperforated oxide thin films, inkjet printing was used for the fabrication of both continuous and patterned polymeric films onto NP-TiO2 and perfluorinated phosphate functionalized NP-TiO2 substrates, respectively. The NP-TiO2 films can be also functionalized with a fluoroalkylsilane, resulting in hydrophobic surfaces on both titania and silica. The surface energy contrast in the nanoperforations can be tuned by irradiating the films with UV light, which provides ideal model systems for wettability studies.
Resumo:
Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.
Resumo:
Mesoporous metal oxides are nowadays widely used in various technological applications, for instance in catalysis, biomolecular separations and drug delivery. A popular technique used to synthesize mesoporous metal oxides is the nanocasting process. Mesoporous metal oxide replicas are obtained from the impregnation of a porous template with a metal oxide precursor followed by thermal treatment and removal of the template by etching in NaOH or HF solutions. In a similar manner to the traditional casting wherein the product inherits the features of the mold, the metal oxide replicas are supposed to have an inverse structure of the starting porous template. This is however not the case, as broken or deformed particles and other structural defects have all been experienced during nanocasting experiments. Although the nanocasting technique is widely used, not all the processing steps are well understood. Questions over the fidelity of replication and morphology control are yet to be adequately answered. This work therefore attempts to answer some of these questions by elucidating the nanocasting process, pin pointing the crucial steps involved and how to harness this knowledge in making wholesome replicas which are a true replication of the starting templates. The rich surface chemistry of mesoporous metal oxides is an important reason why they are widely used in applications such as catalysis, biomolecular separation, etc. At times the surface is modified or functionalized with organic species for stability or for a particular application. In this work, nanocast metal oxides (TiO2, ZrO2 and SnO2) and SiO2 were modified with amino-containing molecules using four different approaches, namely (a) covalent bonding of 3-aminopropyltriethoxysilane (APTES), (b) adsorption of 2-aminoethyl dihydrogen phosphate (AEDP), (c) surface polymerization of aziridine and (d) adsorption of poly(ethylenimine) (PEI) through electrostatic interactions. Afterwards, the hydrolytic stability of each functionalization was investigated at pH 2 and 10 by zeta potential measurements. The modifications were successful except for the AEDP approach which was unable to produce efficient amino-modification on any of the metal oxides used. The APTES, aziridine and PEI amino-modifications were fairly stable at pH 10 for all the metal oxides tested while only AZ and PEI modified-SnO2 were stable at pH 2 after 40 h. Furthermore, the functionalized metal oxides (SiO2, Mn2O3, ZrO2 and SnO2) were packed into columns for capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Among the functionalized metal oxides, aziridinefunctionalized SiO2, (SiO2-AZ) showed good chemical stability, and was the most useful packing material in both CLC and CEC. Lastly, nanocast metal oxides were synthesized for phosphopeptide enrichment which is a technique used to enrich phosphorylated proteins in biological samples prior to mass spectrometry analysis. By using the nanocasting technique to prepare the metal oxides, the surface area was controlled within a range of 42-75 m2/g thereby enabling an objective comparison of the metal oxides. The binding characteristics of these metal oxides were compared by using samples with different levels of complexity such as synthetic peptides and cell lysates. The results show that nanocast TiO2, ZrO2, Fe2O3 and In2O3 have comparable binding characteristics. Furthermore, In2O3 which is a novel material in phosphopeptide enrichment applications performed comparably with standard TiO2 which is the benchmark for such phosphopeptide enrichment procedures. The performance of the metal oxides was explained by ranking the metal oxides according to their isoelectric points and acidity. Overall, the clarification of the nanocasting process provided in this work will aid the synthesis of metal oxides with true fidelity of replication. Also, the different applications of the metal oxides based on their surface interactions and binding characteristics show the versatility of metal oxide materials. Some of these results can form the basis from which further applications and protocols can be developed.
Resumo:
La phosphorylation est une modification post-traductionnelle modulant l’activité, la conformation ou la localisation d’une protéine et régulant divers processus. Les kinases et phosphatases sont responsables de la dynamique de phosphorylation et agissent de manière coordonnée. L’activation anormale ou la dérégulation de kinases peuvent conduire au développement de cancers ou de désordres métaboliques. Les récepteurs tyrosine kinase (RTKs) sont souvent impliqués dans des maladies et la compréhension des mécanismes régissant leur régulation permet de déterminer les effets anticipés sur leurs substrats. Dans ce contexte, le but de cette thèse est d’identifier les évènements de phosphorylation intervenant dans la voie de l’insuline chez la drosophile impliquant un RTK : le récepteur de l’insuline (InR). La cascade de phosphorylation déclenchée suite à l’activation du récepteur est conservée chez le mammifère. Afin d’étudier le phosphoprotéome de cellules S2 de drosophile, nous avons utilisé une étape d’enrichissement de phosphopeptides sur dioxyde de titane suivie de leur séparation par chromatographie liquide (LC) et mobilité ionique (FAIMS). Les phosphopeptides sont analysés par spectrométrie de masse en tandem à haute résolution. Nous avons d’abord démontré les bénéfices de l’utilisation du FAIMS comparativement à une étude conventionnelle en rapportant une augmentation de 50 % dans le nombre de phosphopeptides identifiés avec FAIMS. Cette technique permet de séparer des phosphoisomères difficilement distinguables par LC et l’acquisition de spectres MS/MS distincts où la localisation précise du phosphate est déterminée. Nous avons appliqué cette approche pour l’étude des phosphoprotéomes de cellules S2 contrôles ou traitées à l’insuline et avons identifié 32 phosphopeptides (sur 2 660 quantifiés) pour lesquels la phosphorylation est modulée. Étonnamment, 50 % des cibles régulées possèdent un site consensus pour la kinase CK2. Une stratégie d’inhibition par RNAi a été implémentée afin d’investiguer le rôle de CK2 dans la voie de l’insuline. Nous avons identifié 6 phosphoprotéines (CG30085, su(var)205, scny, protein CDV3 homolog, D1 et mu2) positivement régulées suite à l’insuline et négativement modulées après le traitement par RNAi CK2. Par essai kinase in vitro, nous avons identifié 29 cibles directes de CK2 dont 15 corrélaient avec les résultats obtenus par RNAi. Nous avons démontré que la phosphorylation de su(var)205 (S15) était modulée par l’insuline en plus d’être une cible directe de CK2 suite à l’expérience RNAi et à l’essai kinase. L’analyse des données phosphoprotéomiques a mis en évidence des phosphopeptides isomériques dont certains étaient séparables par FAIMS. Nous avons déterminé leur fréquence lors d’études à grande échelle grâce à deux algorithmes. Le script basé sur les différences de temps de rétention entre isomères a identifié 64 phosphoisomères séparés par LC chez la souris et le rat (moins de 1 % des peptides identifiés). Chez la drosophile, 117 ont été répertoriés en combinaison avec une approche ciblée impliquant des listes d’inclusion. Le second algorithme basé sur la présence d’ions caractéristiques suite à la fragmentation de formes qui co-éluent a rapporté 23 paires isomériques. L’importance de pouvoir distinguer des phosphoisomères est capitale dans le but d’associer une fonction biologique à un site de phosphorylation précis qui doit être identifié avec confiance.
Resumo:
La détection et la caractérisation des nanoparticules manufacturées (NPM) est l’une des premières étapes pour contrôler et diminuer leurs risques potentiels sur la santé humaine et l’environnement. Différents systèmes d’échantillonnage dans l’air existent pour l’évaluation d’une exposition aux NPM. Cependant, ils ne mesurent pas le risque potentiel de cette exposition à la santé humaine ni les mécanismes cellulaires qui en seraient responsables. Nos objectifs de recherche sont 1) Évaluer les effets de différents types de nanoparticules sur des cellules pulmonaires humaines et 2) Identifier de nouveaux mécanismes intracellulaires activés lors de l’exposition à divers types de NPM. Méthodologie: La lignée de cellules A549 a été utilisée. Trois types de NPM ont été étudiés (différentes concentrations et temps d’exposition): les nanoparticules de dioxyde de titane de type anatase (TiO2), les nanotubes de carbone simple paroi (NTCSP) et les nanoparticules de noir de carbone (NC). La viabilité cellulaire a été mesurée par le test MTS, le test PrestoBlue et le test d’exclusion du bleu de Trypan (uniquement pour les NTCSP). La mesure du stress oxydatif a été déterminée par la mesure des dérivés réactifs de l’oxygène (ROS) en utilisant l’essai DCFH-DA. L’activation d’une réponse anti-oxydative a été déterminée par la mesure de la forme réduite (GSH) et oxydée (GSSG) du glutathion, ainsi que du ratio GSH/GSSG (seulement avec NTCSP et TiO2). Résultats: Les trois nanoparticules ne semblent pas être toxiques pour les cellules A549 car il y a une diminution significative mais minime de la viabilité cellulaire. Cependant, elles induisent une augmentation du contenu intracellulaire en ROS qui est à la fois dépendante du temps et de la concentration. Aucun changement dans les concentrations de GSH et GSSG n’a été observé. En conclusion, nos données indiquent que la mesure de la viabilité n’est pas un critère suffisant pour conclure à la toxicité des NPM. La production de ROS est un critère intéressant, cependant il faudra démontrer l’activation de systèmes anti-oxydatifs pour expliquer l’absence de mortalité cellulaire suite à l’exposition aux NPM.
Resumo:
Titania is a versatile metal oxide with multiple applications. Titania supported catalysts are reported to be much more active compared to conventional silica or alumina supported ones in some reactions. TiO2 (anatase) having high surface area, with better crystallinity and high onset temperature of rutilation can be prepared by thermal hydrolysis of titanyl sulfate solution under controlled conditions. Calcinations at 350oC for 6 hrs were necessary to crystallize anatase. Method of preparation and percentage of the loaded metal oxides have greater influence on surface area. Drastic decrease in surface area was observed upon rutilation. Rutilation started at different temperatures depending on the metal oxide and the method of preparation. TiO2 should be characterized with high surface area, phase purity and high onset temperature of rutilation.Which should be well above the optimum temperature of a designated reaction in which it is employed as a catalyst. Variation in physical properties, depending upon the method of preparation is greater in TiO2 supported catalysts. Methanation activity was found to be highly dependent on nickel concentration present on the surface of the pellets. The methanation activity is strongly influenced by support material. The rate and turn over frequency of methanation and toluene oxidation activity of these catalysts are also equally important from an industrial point of view.