911 resultados para Strength exercise
Resumo:
Pulmonary abnormalities are observed in chronic hepatopathy. The measurement of the maximum inspiratory and expiratory pressure may evaluate lung function and the risks associated with hepatic transplantation. Thus, the present work sought to evaluate the respiratory muscle strength of 29 patients between 17 and 63 years old who were enrolled for liver transplantation. The patients were classified according to Child-Turcotte-Pugh score as A, B, or C, and also according to a physiotherapeutic evaluation, which included measurement of respiratory muscle strength by means of a digital manovactrometer, which determines the maximum inspiratory pressure (MaxIP) and the maximum expiratory pressure (MaxEP). The tests were performed with seated individuals having their nostrils obstructed by a nasal clip. The MaxIP was measured during the effort initiated in the residual volume, whereas the MaxEP was measured during the effort initiated in the total pulmonary capacity, keeping pressures stable for at least 1 second. The statistical analysis was performed through using the Mann-Whitney test with a 5% level of significance. The MaxIP values of Child A 95.5 +/- 40.507 cm H2O (average +/- DP) and Child B 87.2 +/- 35.02 patients were higher than those for Child C patients (34.83 +/- 3.68; P <.05). Similar results were observed for the MaxEP of Child A and B groups (116.25 +/- 31.98 and 97.28 +/- 31.08, respectively; P <.05), versus the Child C group (48.16 +/- 22.60). Between groups A and B, the MaxEP were similar (P >.05). We concluded that Child C patients display muscle weakness significantly greater than that of subjects classified as Child A or B.
Resumo:
Study Design. In vitro biomechanical investigation of the screw-holding capacity. Objective. To evaluate the effect of repetitive screw-hole use on the insertional torque and retentive strength of vertebral system screws. Summary and Background Data. Placement and removal of vertebral system screws is sometimes necessary during the surgical procedures in order to assess the walls of the pilot hole. This procedure may compromise the holding capacity of the implant. Methods. Screws with outer diameter measuring 5, 6, and 7 mm were inserted into wood, polyurethane, polyethylene, and cancellous bone cylindrical blocks. The pilot holes were made with drills of a smaller, equal, or wider diameter than the inner screw diameter. Three experimental groups were established based on the number of insertions and reinsertions of the screws and subgroups were created according to the outer diameter of the screw and the diameter of the pilot hole used. Results. A reduction of screw-holding capacity was observed between the first and the following insertions regardless the anchorage material. The pattern of reduction of retentive strength was not similar to the pattern of torque reduction. The pullout strength was more pronounced between the first and the last insertions, while the torque decreased more proportionally from the first to the last insertions. Conclusion. Insertion and reinsertion of the screws of the vertebral fixation system used in the present study reduced the insertion torque and screw purchase.
Resumo:
Background: Magnesium (Mg) use has the potential to promote bronchodilatation and to improve lung function in obstructive diseases. IV administration of Mg during exacerbations of chronic obstructive pulmonary disease (COPD) has led to improved peak flow. This study aimed to investigate the effects of acute IV Mg loading on respiratory parameters of stable COPD patients. Material/Methods: This was a randomized, double-blind, placebo-controlled crossover study. Twenty-two male COPD patients (64 +/- 6 years old, FEV1: 49 +/- 20%) received an IV infusion of 2 g of magnesium sulfate or placebo on two distinct occasions. Spirometry and mouth maximal respiratory pressures were obtained before and 45 minutes after the infusions. Results: Mg use led to significant changes in functional respiratory capacity (-0.48 1,95% CI: -0.96, -0.01), inspiratory capacity (0.21 1,95% CI: 0.04, 0.37). The treatment was also associated with a marginally significant decrease in residual volume (-0.47 1,95% CI: -0.96, 0.02, p=0.06). Conclusions: Acute IV Mg loading in stable COPD patients was associated with a reduction in lung hyperinflation and improvement of respiratory muscle strength. The clinical potential for chronic magnesium supplementation in COPD deserves further investigation.
Resumo:
Deminice, R, Sicchieri, T, Mialich, MS, Milani, F, Ovidio, PP, and Jordao, AA. Oxidative stress biomarker responses to an acute session of hypertrophy-resistance traditional interval training and circuit training. J Strength Cond Res 25(3): 798-804, 2011-We have studied circuit resistance schemes with high loads as a time-effective alternative to hypertrophy-traditional resistance training. However, the oxidative stress biomarker responses to high-load circuit training are unknown. The aim of the present study was to compare oxidative stress biomarker response with an acute session of hypertrophy-resistance circuit training and traditional interval training. A week after the 1 repetition maximum (1RM) test, 11 healthy and well-trained male participants completed hypertrophy-resistance acute sessions of traditional interval training (3 x 10 repetitions at 75% of the 1RM, with 90-second passive rest) and circuit training (3 x 10 repetitions at 75% of the 1RM, in alternating performance of 2 exercises with different muscle groups) in a randomized and cross-over design. Venous blood samples were collected before (pre) and 10 minutes after (post) the resistance training sessions for oxidative stress biomarker assays. As expected, the time used to complete the circuit training (20.2 +/- 1.6) was half of that needed to complete the traditional interval training (40.3 +/- 1.8). Significant increases (p < 0.05) in thiobarbituric acid reactive substances (40%), creatine kinase (CK) (67%), glutathione (14%), and uric acid (25%) were detected posttraditional interval training session in relation to pre. In relation to circuit training, a significant increase in CK (33%) activity postsession in relation to pre was observed. Statistical analysis did not reveal any other change in the oxidative stress biomarker after circuit training. In conclusion, circuit resistance-hypertrophy training scheme proposed in the current study promoted lower oxidative stress biomarkers and antioxidant modulations compared with resistance traditional interval training.
Resumo:
The aim of the present study was to compare oxidative stress biomarkers determined in blood and saliva before and after acute resistance exercise. 1 week after 1 maximum repetition (1RM) test 11 healthy well-trained males completed a hypertrophy acute session of resistance training including 3 sets of 10 repetitions at 75% of the 1RM, with 90s rest periods between sets. Venous blood and saliva samples were collected before (pre) and 10 min after (post) the resistance training session. A significant (p < 0.05) rise in blood lactate accumulation (pre: 1.6 +/- 0.4 vs. post: 9.5 +/- 2.4) was found post-acute resistance training compared with baseline values. Significant increases (p < 0.05) in TBARS (42%), AOPP (28%), uric acid (27%) and GSH (14%) were detected post-acute resistance training in relation to pre in blood samples. A significant increase (p < 0.05) in uric acid (36%) was found in saliva post-acute resistance training as well as a significant correlation (p < 0.05) between uric acid determined in blood and saliva. Statistical analysis did not reveal any other change in the salivary oxidative stress biomarkers. In conclusion, an acute session of resistance exercise induces oxidative stress in plasma of trained men after acute resistance training, which was not found in saliva samples except for uric acid.
Resumo:
Metabolic syndrome (MetS) denotes a clustering of risk factors that may affect nitric oxide (NO) bioavailability and predispose to cardiovascular diseases, which are delayed by exercise training. However, no previous study has examined how MetS affects markers of NO formation, and whether exercise training increases NO formation in MetS patients. Here, we tested these two hypotheses. We studied 48 sedentary individuals: 20 healthy controls and 28 MetS patients. Eighteen MetS patients were subjected to a 3-month exercise training (E+group), while the remaining 10 MetS patients remained sedentary (E-group). The plasma concentrations of nitrite, cGMP, and ADMA (asymmetrical dimethylarginine: an endogenous nitric oxide synthase inhibitor), and the whole blood nitrite concentrations were determined at baseline and after exercise training using an ozone-based chemiluminescence assay, and commercial enzyme immunoassays. Thiobarbituric acid reactive species (TBA-RS) were measured in the plasma to assess oxidative stress using a fluorometric method. We found that, compared with healthy subjects, patients with MetS have lower concentrations of markers of NO formation, including whole blood nitrite, plasma nitrite, and plasma cGMP, and increased oxidative stress (all P < 0.05). Exercise training increased the concentrations of whole blood nitrite and cGMP, and decreased both oxidative stress and the circulating concentrations of ADMA (both P < 0.05). These findings show clinical evidence for lower endogenous NO formation in patients with MetS, and for improvements in NO formation associated with exercise training in MetS patients. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
It is well known that regular physical exercise alter cardiac function and autonomic modulation of heart rate variability (HRV). The paraventricular nucleus of hypothalamus (PVN) is an important site of integration for autonomic and cardiovascular responses, where nitric oxide (NO) plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after nitric oxide synthase (NOS) inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After swimming training protocol, adult male Wistar rats, instrumented with guide cannulas to PVN and femoral artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, the physical training induced a resting bradycardia (S: 374 +/- 5, ST: 346 +/- 1 bpm) and promoted adaptations in HRV characterized by an increase in high-frequency oscillations (HF; 26.43 +/- 6.91 to 88.96 +/- 244) and a decrease in low-frequency oscillations (LF; 73.57 +/- 6.91 to 11.04 +/- 2.44) in normalized units. The microinjection of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the PVN of sedentary and trained rats promoted increase in MAP and HR. L-NAME in the PVN did not significantly alter the spectral parameters of HRV of sedentary animals, however in the trained rats increased LF oscillations (11.04 +/- 2.44 to 27.62 +/- 6.97) and decreased HF oscillations (88.96 +/- 2.44 to 72.38 +/- 6.97) in normalized units compared with baseline. Our results suggest that NO in the PVN may collaborate to cardiac autonomic modulation after exercise training. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.
Resumo:
Objectives. To compare pelvic floor muscle (PFM) strength between women undergoing vaginal delivery, cesarean section, and nulliparae, investigating the factors associated with PFM strength, and observing the correlation between vaginal digital palpation and use of a perineometer. Methods. A cross-sectional study was conducted, including 31 women following vaginal delivery, 30 women following cesarean section, and 30 nulliparous women. PFM strength was measured by vaginal digital palpation and use of a perineometer. Multiple linear regression analysis with adjustment for covariables was used to compare the mean PFM strength and identify its associated factors. Results. The mean PFM strength of women undergoing vaginal delivery and cesarean section was 25.6 +/- 14.5 cmH(2)O and 39.6 +/- 22.0 cmH(2)O (p < 0.01, adjusted for covariables), respectively. A correlation was observed between measurements of PFM strength obtained by vaginal digital palpation and use of a perineometer (tau = 0.82; p < 0.01). The non-white race/ethnicity was negatively associated with PFM strength (coefficient: -10.2424; p = 0.02). Conclusions. A lower PFM strength was observed in women with a history of vaginal delivery compared to those undergoing cesarean section. Non-white race/ethnicity negatively affected PFM strength. Our data suggest that vaginal digital palpation may be used in clinical practice because of its expressive correlation with use of a perineometer.
Resumo:
P>The measurement of tongue strength contributes to the study of oro-facial physiology. The objective of this study was to investigate the influence of gender on tongue strength in young adults and to determine the differences in this strength between tongue regions. This study was conducted on 50 healthy volunteers (17 men and 33 women) with a mean age of 23 years, with no oro-facial myofunctional alterations. The strength of the anterior portion and of the dorsum of the tongue was analysed with a calibrated electronic dynamometer. The subjects were asked to apply maximum force. Men showed higher tongue strength values than women both in the anterior portion and in the dorsum of the tongue (P < 0 center dot 05), and the strength of the anterior portion of the tongue was lower than that of the dorsum in both genders (P < 0 center dot 05). We conclude that gender and region influenced tongue strength.
Resumo:
Purposes: There is evidence that the risk of colon cancer is reduced by appropriate levels of physical exercise. Nevertheless, the mechanisms involved in this protective effect of exercise remain largely unknown. Inflammation is emerging as a unifying link between a range of environment exposures and neoplastic risk. The carcinogen dimethyl-hydrazine (DMH) induces an increase in epithelial cell proliferation and in the expression of the inflammation-related enzyme cyclooxigenase-2 (COX-2) in the colon of rats. Our aim was to verify whether these events could be attenuated by exercise. Methods: Four groups of eight Wistar rats were used in the experiment. The groups G1 and G3 were sedentary (controls), and the groups G2 and G4 were submitted to 8 wk of swimming training, 5 d wk(-1). The groups G3 and G4 were given subcutaneous injections of DMH immediately after the exercise protocols. Fifteen days after the neoplasic induction, the rats were sacrificed and the colon was processed for histological examination and immunohistochemistry staining of proliferating cell nuclear antigen (PCNA) and COX-2. Results: We found a significant increase in the PCNA-labeling index in both DMH-treated groups of rats. However, this increase was significantly attenuated in the training group G4 (P < 0.01). Similar results were observed in relation to the COX-2 expression. Conclusions: From our findings, we conclude that exercise training exerts remarkable antiproliferative and antiinflammatory effects in the rat colonic mucosa, suggesting that this may be an important mechanism to explain how exercise protects against colonic cancer.