998 resultados para Olds Motor Works
Resumo:
深海机器人推进电机系统中出现的混沌现象,直接影响深海机器人稳定性、可靠性和安全性.采用自适应控制技术对其混沌行为加以控制,对该方法的可行性和有效性进行了证明.设计和构造了易于工程实施的混沌控制器,用于深海机器人推进电机系统混沌控制.仿真实验表明,推进电机系统在自适应控制器的作用下可迅速脱离混沌状态,并进入持续稳定状态,控制效果明显.可以为深海机器人推进电机系统中可能出现的混沌运行行为提供控制策略和抑制预案,有利于混沌控制嵌入软件的开发,确保深海机器人稳定、可靠和安全地运行,具有一定的实用价值.
Resumo:
The goal of this thesis is to apply the computational approach to motor learning, i.e., describe the constraints that enable performance improvement with experience and also the constraints that must be satisfied by a motor learning system, describe what is being computed in order to achieve learning, and why it is being computed. The particular tasks used to assess motor learning are loaded and unloaded free arm movement, and the thesis includes work on rigid body load estimation, arm model estimation, optimal filtering for model parameter estimation, and trajectory learning from practice. Learning algorithms have been developed and implemented in the context of robot arm control. The thesis demonstrates some of the roles of knowledge in learning. Powerful generalizations can be made on the basis of knowledge of system structure, as is demonstrated in the load and arm model estimation algorithms. Improving the performance of parameter estimation algorithms used in learning involves knowledge of the measurement noise characteristics, as is shown in the derivation of optimal filters. Using trajectory errors to correct commands requires knowledge of how command errors are transformed into performance errors, i.e., an accurate model of the dynamics of the controlled system, as is demonstrated in the trajectory learning work. The performance demonstrated by the algorithms developed in this thesis should be compared with algorithms that use less knowledge, such as table based schemes to learn arm dynamics, previous single trajectory learning algorithms, and much of traditional adaptive control.
Resumo:
A model is presented that deals with problems of motor control, motor learning, and sensorimotor integration. The equations of motion for a limb are parameterized and used in conjunction with a quantized, multi-dimensional memory organized by state variables. Descriptions of desired trajectories are translated into motor commands which will replicate the specified motions. The initial specification of a movement is free of information regarding the mechanics of the effector system. Learning occurs without the use of error correction when practice data are collected and analyzed.
Resumo:
Presentations from the seminar on timber grading. "This grading seminar will give you a crash course in timber strength grading, what it is, how it works, and how it is changing. It aims to demystify timber grading, tackle some widely held misconceptions, and tell you the things you need to be aware of to improve profitability, and remain correct and safe in what you do. The timber resource in the UK is changing, technology is advancing, and standards are being modified. This seminar will bring you the latest position, informed by CEN and BSI standards committee work and research conducted by the SIRT network."
Resumo:
M. H. Lee and Q. Meng, Growth of Motor Coordination in Early Robot Learning, IJCAI-05, 2005.
Resumo:
M.H. Lee, Q. Meng and F. Chao, 'A Content-Neutral Approach for Sensory-Motor Learning in Developmental Robotics', EpiRob'06: Sixth International Conference on Epigenetic Robotics, Paris, 55-62, 2006.
Resumo:
M.H. Lee and Q. Meng, 'Staged development of Robot Motor Coordination', IEEE International Conference on Systems, Man and Cybernetics, (IEEE SMC 05), Hawaii, USA, v3, 2917-2922, 2005.
Resumo:
Lee, M., Meng, Q. (2005). Psychologically Inspired Sensory-Motor Development in Early Robot Learning. International Journal of Advanced Robotic Systems, 325-334.
Resumo:
M.H. Lee and Q. Meng, 'Psychologically Inspired Sensory-Motor Development in Early Robot Learning', in proceedings of Towards Autonomous Robotic Systems 2005 (TAROS-05), Nehmzow, U., Melhuish, C. and Witkowski, M. (Eds.), Imperial College London, 157-163, September 2005. See published version: http://hdl.handle.net/2160/485
Resumo:
De acuerdo a la normativa de TFEs el repositorio no puede dar acceso a este trabajo. Para consultarlo póngase en contacto con el tutor del trabajo. Puede acceder al resumen del mismo pinchando en el pdf adjunto.
Resumo:
http://www.archive.org/details/acrosstheprairie00haseuoft
Resumo:
http://www.archive.org/details/wardshidoos00sethuoft
Resumo:
The concept of attention has been used in many senses, often without clarifying how or why attention works as it does. Attention, like consciousness, is often described in a disembodied way. The present article summarizes neural models and supportive data and how attention is linked to processes of learning, expectation, competition, and consciousness. A key them is that attention modulates cortical self-organization and stability. Perceptual and cognitive neocortex is organized into six main cell layers, with characteristic sub-lamina. Attention is part of unified design of bottom-up, horizontal, and top-down interactions among indentified cells in laminar cortical circuits. Neural models clarify how attention may be allocated during processes of visual perception, learning and search; auditory streaming and speech perception; movement target selection during sensory-motor control; mental imagery and fantasy; and hallucination during mental disorders, among other processes.
Resumo:
This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.
Resumo:
This paper describes a model of speech production called DIVA that highlights issues of self-organization and motor equivalent production of phonological units. The model uses a circular reaction strategy to learn two mappings between three levels of representation. Data on the plasticity of phonemic perceptual boundaries motivates a learned mapping between phoneme representations and vocal tract variables. A second mapping between vocal tract variables and articulator movements is also learned. To achieve the flexible control made possible by the redundancy of this mapping, desired directions in vocal tract configuration space are mapped into articulator velocity commands. Because each vocal tract direction cell learns to activate several articulator velocities during babbling, the model provides a natural account of the formation of coordinative structures. Model simulations show automatic compensation for unexpected constraints despite no previous experience or learning under these constraints.