997 resultados para OPTIC RADIATION
Resumo:
Based on the results of the temperature-dependent photoluminescence (PL) measurements, the broad PL emission in the phase-separated GaNP alloys with P compositions of 0.03, 0.07, and 0.15 has investigated. The broad PL peaks at 2.18, 2.12 and 1.83 eV are assigned to be an emission from the optical transitions from several trap levels, possibly the iso-electronic trap levels related to nitrogen. With the increasing P composition (from 0.03 to 0.15), these iso-electronic trap levels are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to the apparent red shift (80-160meV) of the PL peak energy and the trend of the red shift is strengthened. No PL emission peak is observed from the GaN-rich GaNP region, suggesting that the photogenerated carriers in the GaN-rich GaNP region may recombine with each other via non-radiation transitions.
Resumo:
The adsorption of K on the n-GaAs(I 0 0) surface was investigated by X-ray photoelectron spectroscopy (XPS) and synchrotron radiation photoemission spectroscopy (SR-PES). The Ga3d and As3d core level was measured for clean and K adsorbed GaAs(I 0 0) surface. The adsorption of K induced chemical reaction between K and As, and the K-As reactant formed when the K coverage theta > I ML. The chemical reaction between K and Ga did not occur, but Ga atoms were exchanged by K atoms. From the data of band bending, the Schottky barrier is 0.70 eV. The Fermi-level pinning was not caused by defect levels. The probable reason is that the dangling bonds of surface Ga atoms were filled by the outer-shell electrons of K atoms, forming a half-filled surface state. The Fermi-level pinning was caused by this half-filled surface state. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A rearrangeable nonblocking thermo-optic 4 x 4 switching matrix is demonstrated. The matrix, which consists of five 2 x 2 multimode interference-based Mach-Zehnder interferometer (MMI-MZI) switch elements, is fabricated in silicon-on-insulator waveguide system. The average excess loss for the optical path experiencing 2 and 3 switch elements is 6.6 and 10.1 dB respectively. The crosstalk in the matrix is measured to be between -12 and -19 dB. The switching time of the device is less than 30 mu s.
Resumo:
An investigation of hardening the buried oxides (BOX) in separation by implanted oxygen (SIMOX) silicon-on-insulator (SOI) wafers to total-dose irradiation has been made by implanting nitrogen into the BOX layers with a constant dose at different implantation energies. The total-dose radiation hardness of the BOX layers is characterized by the high frequency capacitance-voltage (C-V) technique. The experimental results show that the implantation of nitrogen into the BOX layers can increase the BOX hardness to total-dose irradiation. Particularly, the implantation energy of nitrogen ions plays an important role in improving the radiation hardness of the BOX layers. The optimized implantation energy being used for a nitrogen dose, the hardness of BOX can be considerably improved. In addition, the C-V results show that there are differences between the BOX capacitances due to the different nitrogen implantation energies.
Resumo:
A 4 x 4 strictly nonblocking thermo-optic switch matrix implemented with a 2 x 2 Mach-Zehnder switch unit was fabricated in silicon-on-insulator wafer. Insertion losses of the shortest and the longest path in the device are about 14.8 dB and 19.2 dB, respectively. The device presents a very low loss dependent on wavelength. For one switch unit, the power consumption needed for operation is measured to be 0.270 W-0.288 W and the switching time is about 13 +/- 1 mu s.
A silicon-on-insulator-based thermo-optic waveguide switch with low insertion loss and fast response
Resumo:
A silicon-on-insulator-based thermo-optic waveguide switch integrated with spot size converters is designed and fabricated by inductively coupled plasma reactive ion etching. The device shows good characteristics, including low, insertion loss of 8 +/- 1 dB for wavelength 1530-1580 nm and fast response times of 4.6 As for rising edge and 1.9 mu s for failing edge. The extinction ratios of the two channels are 19.1 and 18 dB, respectively.
Resumo:
A novel silicon-on-insulator thermo-optic variable optical attenuator with isolated grooves based on a multimode interference coupler principle is fabricated by the inductive coupled plasma etching technology. The maximum fibre-to-fibre insertion loss is lower than 2.2 dB, the dynamic attenuation range is from 0 to 30 dB in the wavelength range 1500-1600 nm, and the maximum power consumption is only 140 mW. The response frequency of the fabricated variable optical attenuator is about 30 kHz. Compared to the variable optical attenuator without isolated grooves, the maximum power consumption decreases more than 220 mW, and the response frequency rises are more than 20 kHz.
Resumo:
The effect of implanting nitrogen into buried oxide on the top gate oxide hardness against total irradiation does has been investigated with three nitrogen implantation doses (8 x 10(15), 2 x 10(16) and 1 x 10(17) cm(-2)) for partially depleted SOI PMOSFET. The experimental results reveal the trend of negative shift of the threshold voltages of the studied transistors with the increase of nitrogen implantation dose before irradiation. After the irradiation with a total dose of 5 x 10(5) rad(Si) under a positive gate voltage of 2V, the threshold voltage shift of the transistors corresponding to the nitrogen implantation dose 8 x 10(15) cm(-2) is smaller than that of the transistors without implantation. However, when the implantation dose reaches 2 x 10(16) and 1 x 10(17) cm(-2), for the majority of the tested transistors, their top gate oxide was badly damaged due to irradiation. In addition, the radiation also causes damage to the body-drain junctions of the transistors with the gate oxide damaged. All the results can be interpreted by tracing back to the nitrogen implantation damage to the crystal lattices in the top silicon.
Resumo:
A low power consumption 2 x 2 thermo-optic switch with fast response was fabricated on silicon-on-insulator by anisotropy chemical etching. Blocking trenches were etched on both sides of the phase-shifting arms to shorten device length and reduce power consumption. Thin top cladding layer was grown to reduce power consumption and switching time. The device showed good characteristics, including a low switching power of 145 mW and a fast switching speed of 8 +/- 1 mus, respectively. Two-dimensional finite element method was applied to simulate temperature field in the phase-shifting arm instead of conventional one-dimensional method. According to the simulated result, a new two-dimensional index distribution of phase-shifting arm was determined. Consequently finite-difference beam propagation method was employed to simulate the light propagation in the switch, and calculate the power consumption as well as the switching speed. The experimental results were in good agreement with the theoretical estimations. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An electro-optic variable optical attenuator in silicon-on-insulator is designed and fabricated. A series Structure is used to improve the device efficiency Compared to the attenuator in the single p-i-n diode Structure in the same modulating length, the attenuation range of the device in the series structure improves 2-3 times in the same injecting current density, while the insertion loss is not affected. The maximum dynamic attenuation of the device is greater than 30 dB. The response frequency is obtained to be about 2 MHz.
Resumo:
The effect of proton radiation on a superluminescent diode (SLD) was studied, and the radiation damage from different energies was compared. The results reveal that the optical power degradation is greater from 350 KeV protons than from 1 MeV protons. Analysis of SLD characteristics after irradiation shows that the main effect of radiation is damage within the active region. At the same time, the results also show that quantum-well (QW) SLDs are far less sensitive to radiation than double-heterojunction (DH) SLDs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Mechanical principles of fibre-optic disc accelerometers (FODA) different from those assumed in previous calculation methods are presented. An FODA with a high sensitivity of 82 rad/ g and a resonance frequency of 360 Hz is designed and tested. In this system, the minimum measurable demodulation phase of the phase-generated carrier (PGC) is 10(-5) rad, and the minimum acceleration reaches 120 ng theoretically. This kind of FODA, with its high responsivity, all-optic-fibre configuration, small size, light weight and stiff shell housing, ensures effective performance in practice.
Resumo:
A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4 X 4 switch matrix is designed and fabricated. A spot-size converter is integrated to reduce the insertion loss, and a new driving circuit is designed to improve the response speed. The insertion loss is less than 10 dB, and the response time is 950 us. (c) 2007 Optical Society of America
Resumo:
The temperature dependence of silicon-on-insulator thermo-optic attenuators is analysed, which originates from the temperature dependence of characteristics of multimode interference. The attenuator depth and power consumption are independent of temperature while the insertion loss depends on the temperature heavily. The variation of the insertion loss decreases from 4.3 dB to 1 dB as the temperature increases from 273 K to 343 K.
Resumo:
Ten-period 5.5 nm Si0.75Ge0.25/10.3 nm Si/2.5 nm Si0.5Ge0.5 trilayer asymmetric superlattice was prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The stability of Mach-Zehnder interferometer was improved by utilizing polarization-maintaining fibers. According to the electro-optic responses of the superlattice with the light polarization along [110] and [-110], respectively, both electro-optic coefficients gamma(13) and gamma(63) of such asymmetric superlattice were measured. gamma(13) and gamma(63) are 2.4x10(-11) and 1.3x10(-11) cm/V, respectively, with the incident light wavelength at 1.55 mu m. (c) 2006 American Institute of Physics.