970 resultados para N Euclidean algebra
Resumo:
Information from the full diffusion tensor (DT) was used to compute voxel-wise genetic contributions to brain fiber microstructure. First, we designed a new multivariate intraclass correlation formula in the log-Euclidean framework. We then analyzed used the full multivariate structure of the tensor in a multivariate version of a voxel-wise maximum-likelihood structural equation model (SEM) that computes the variance contributions in the DTs from genetic (A), common environmental (C) and unique environmental (E) factors. Our algorithm was tested on DT images from 25 identical and 25 fraternal twin pairs. After linear and fluid registration to a mean template, we computed the intraclass correlation and Falconer's heritability statistic for several scalar DT-derived measures and for the full multivariate tensors. Covariance matrices were found from the DTs, and inputted into SEM. Analyzing the full DT enhanced the detection of A and C effects. This approach should empower imaging genetics studies that use DTI.
Resumo:
We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 monozygotic (MZ) twins and 25 dizygotic (DZ) twin pairs (100 subjects total). First, the structural and DT scans were linearly co-registered. Structural MR scans were nonlinearly mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was measured between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quanititative genetic studies can take advantage of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.
Resumo:
We study the influence of the choice of template in tensor-based morphometry. Using 3D brain MR images from 10 monozygotic twin pairs, we defined a tensor-based distance in the log-Euclidean framework [1] between each image pair in the study. Relative to this metric, twin pairs were found to be closer to each other on average than random pairings, consistent with evidence that brain structure is under strong genetic control. We also computed the intraclass correlation and associated permutation p-value at each voxel for the determinant of the Jacobian matrix of the transformation. The cumulative distribution function (cdf) of the p-values was found at each voxel for each of the templates and compared to the null distribution. Surprisingly, there was very little difference between CDFs of statistics computed from analyses using different templates. As the brain with least log-Euclidean deformation cost, the mean template defined here avoids the blurring caused by creating a synthetic image from a population, and when selected from a large population, avoids bias by being geometrically centered, in a metric that is sensitive enough to anatomical similarity that it can even detect genetic affinity among anatomies.
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.
Resumo:
An input-output, frequency-domain characterization of decentralized fixed modes is given in this paper, using only standard block-diagram algebra, well-known determinantal expansions and the Binet-Cauchy formula.
Resumo:
In this paper we study two problems in feedback stabilization. The first is the simultaneous stabilization problem, which can be stated as follows. Given plantsG_{0}, G_{1},..., G_{l}, does there exist a single compensatorCthat stabilizes all of them? The second is that of stabilization by a stable compensator, or more generally, a "least unstable" compensator. Given a plantG, we would like to know whether or not there exists a stable compensatorCthat stabilizesG; if not, what is the smallest number of right half-place poles (counted according to their McMillan degree) that any stabilizing compensator must have? We show that the two problems are equivalent in the following sense. The problem of simultaneously stabilizingl + 1plants can be reduced to the problem of simultaneously stabilizinglplants using a stable compensator, which in turn can be stated as the following purely algebraic problem. Given2lmatricesA_{1}, ..., A_{l}, B_{1}, ..., B_{l}, whereA_{i}, B_{i}are right-coprime for alli, does there exist a matrixMsuch thatA_{i} + MB_{i}, is unimodular for alli?Conversely, the problem of simultaneously stabilizinglplants using a stable compensator can be formulated as one of simultaneously stabilizingl + 1plants. The problem of determining whether or not there exists anMsuch thatA + BMis unimodular, given a right-coprime pair (A, B), turns out to be a special case of a question concerning a matrix division algorithm in a proper Euclidean domain. We give an answer to this question, and we believe this result might be of some independent interest. We show that, given twon times mplantsG_{0} and G_{1}we can generically stabilize them simultaneously provided eithernormis greater than one. In contrast, simultaneous stabilizability, of two single-input-single-output plants, g0and g1, is not generic.
Resumo:
Para-Bose commutation relations are related to the SL(2,R) Lie algebra. The irreducible representation [script D]alpha of the para-Bose system is obtained as the direct sum Dbeta[direct-sum]Dbeta+1/2 of the representations of the SL(2,R) Lie algebra. The position and momentum eigenstates are then obtained in this representation [script D]alpha, using the matrix mechanical method. The orthogonality, completeness, and the overlap of these eigenstates are derived. The momentum eigenstates are also derived using the wave mechanical method by specifying the domain of the definition of the momentum operator in addition to giving it a formal differential expression. By a careful consideration in this manner we find that the two apparently different solutions obtained by Ohnuki and Kamefuchi in this context are actually unitarily equivalent. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
This paper addresses the following predictive business process monitoring problem: Given the execution trace of an ongoing case,and given a set of traces of historical (completed) cases, predict the most likely outcome of the ongoing case. In this context, a trace refers to a sequence of events with corresponding payloads, where a payload consists of a set of attribute-value pairs. Meanwhile, an outcome refers to a label associated to completed cases, like, for example, a label indicating that a given case completed “on time” (with respect to a given desired duration) or “late”, or a label indicating that a given case led to a customer complaint or not. The paper tackles this problem via a two-phased approach. In the first phase, prefixes of historical cases are encoded using complex symbolic sequences and clustered. In the second phase, a classifier is built for each of the clusters. To predict the outcome of an ongoing case at runtime given its (uncompleted) trace, we select the closest cluster(s) to the trace in question and apply the respective classifier(s), taking into account the Euclidean distance of the trace from the center of the clusters. We consider two families of clustering algorithms – hierarchical clustering and k-medoids – and use random forests for classification. The approach was evaluated on four real-life datasets.
Resumo:
Landscape and local-scale influences are important drivers of plant community structure. However, their relative contribution and the degree to which they interact remain unclear. We quantified the extent to which landscape structure, within-patch habitat and their confounding effects determine post-clearing tree densities and composition in agricultural landscapes in eastern subtropical Australia. Landscape structure (incorporating habitat fragmentation and loss) and within-patch (site) features were quantified for 60 remnant patches of Eucalyptus populnea (Myrtaceae) woodland. Tree density and species for three ecological maturity classes (regeneration, early maturity, late maturity) and local site features were assessed in one 100 × 10 m plot per patch. All but one landscape characteristic was determined within a 1.3-km radius of plots; Euclidean nearest neighbour distance was measured inside a 5-km radius. Variation in tree density and composition for each maturity class was partitioned into independent landscape, independent site and joint effects of landscape and site features using redundancy analysis. Independent site effects explained more variation in regeneration density and composition than pure landscape effects; significant predictors were the proportion of early and late maturity trees at a site, rainfall and the associated interaction. Conversely, landscape structure explained greater variation in early and late maturity tree density and composition than site predictors. Area of remnant native vegetation within a landscape and patch characteristics (area, shape, edge contrast) were significant predictors of early maturity tree density. However, 31% of the explained variation in early mature tree differences represented confounding influences of landscape and local variables. We suggest that within-patch characteristics are important in influencing semi-arid woodland tree regeneration. However, independent and confounding effects of landscape structure resulting from previous vegetation clearing may have exerted a greater historical influence on older cohorts and should be accounted for when examining woodland dynamics across a broader range of environments.
Resumo:
This research is based on the problems in secondary school algebra I have noticed in my own work as a teacher of mathematics. Algebra does not touch the pupil, it remains knowledge that is not used or tested. Furthermore the performance level in algebra is quite low. This study presents a model for 7th grade algebra instruction in order to make algebra more natural and useful to students. I refer to the instruction model as the Idea-based Algebra (IDEAA). The basic ideas of this IDEAA model are 1) to combine children's own informal mathematics with scientific mathematics ("math math") and 2) to structure algebra content as a "map of big ideas", not as a traditional sequence of powers, polynomials, equations, and word problems. This research project is a kind of design process or design research. As such, this project has three, intertwined goals: research, design and pedagogical practice. I also assume three roles. As a researcher, I want to learn about learning and school algebra, its problems and possibilities. As a designer, I use research in the intervention to develop a shared artefact, the instruction model. In addition, I want to improve the practice through intervention and research. A design research like this is quite challenging. Its goals and means are intertwined and change in the research process. Theory emerges from the inquiry; it is not given a priori. The aim to improve instruction is normative, as one should take into account what "good" means in school algebra. An important part of my study is to work out these paradigmatic questions. The result of the study is threefold. The main result is the instruction model designed in the study. The second result is the theory that is developed of the teaching, learning and algebra. The third result is knowledge of the design process. The instruction model (IDEAA) is connected to four main features of good algebra education: 1) the situationality of learning, 2) learning as knowledge building, in which natural language and intuitive thinking work as "intermediaries", 3) the emergence and diversity of algebra, and 4) the development of high performance skills at any stage of instruction.
Resumo:
From Arithmetic to Algebra. Changes in the skills in comprehensive school over 20 years. In recent decades we have emphasized the understanding of calculation in mathematics teaching. Many studies have found that better understanding helps to apply skills in new conditions and that the ability to think on an abstract level increases the transfer to new contexts. In my research I take into consideration competence as a matrix where content is in a horizontal line and levels of thinking are in a vertical line. The know-how is intellectual and strategic flexibility and understanding. The resources and limitations of memory have their effects on learning in different ways in different phases. Therefore both flexible conceptual thinking and automatization must be considered in learning. The research questions that I examine are what kind of changes have occurred in mathematical skills in comprehensive school over the last 20 years and what kind of conceptual thinking is demonstrated by students in this decade. The study consists of two parts. The first part is a statistical analysis of the mathematical skills and their changes over the last 20 years in comprehensive school. In the test the pupils did not use calculators. The second part is a qualitative analysis of the conceptual thinking of pupils in comprehensive school in this decade. The study shows significant differences in algebra and in some parts of arithmetic. The largest differences were detected in the calculation skills of fractions. In the 1980s two out of three pupils were able to complete tasks with fractions, but in the 2000s only one out of three pupils were able to do the same tasks. Also remarkable is that out of the students who could complete the tasks with fractions, only one out of three pupils was on the conceptual level in his/her thinking. This means that about 10% of pupils are able to understand the algebraic expression, which has the same isomorphic structure as the arithmetical expression. This finding is important because the ability to think innovatively is created when learning the basic concepts. Keywords: arithmetic, algebra, competence
Resumo:
We obtain the superconformal transformation laws for theN=2,D=4 SSYM. The transformations involve Yang-Mills fields and the corresponding field strength tensor is not constrained to be self antidual. We explicitly demonstrate the closure of the superconformal algebra.
Resumo:
A general derivation of the coupling constant relations which result on embedding a non-simple group like SU L (2) @ U(1) in a larger simple group (or graded Lie group) is given. It is shown that such relations depend only on the requirement (i) that the multiplet of vector fields form an irreducible representation of the unifying algebra and (ii) the transformation properties of the fermions under SU L (2). This point is illustrated in two ways, one by constructing two different unification groups containing the same fermions and therefore have same Weinberg angle; the other by putting different SU L (2) structures on the same fermions and consequently have different Weinberg angles. In particular the value sin~0=3/8 is characteristic of the sequential doublet models or models which invoke a large number of additional leptons like E 6, while addition of extra charged fermion singlets can reduce the value of sin ~ 0 to 1/4. We point out that at the present time the models of grand unification are far from unique.
Resumo:
Functional Programming (FP) systems are modified and extended to form Nondeterministic Functional Programming (NFP) systems in which nondeterministic programs can be specified and both deterministic and nondeterministic programs can be verified essentially within the system. It is shown that the algebra of NFP programs has simpler laws in comparison with the algebra of FP programs. "Regular" forms are introduced to put forward a disciplined way of reasoning about programs. Finally, an alternative definition of "linear" forms is proposed for reasoning about recursively defined programs. This definition, when used to test the linearity of forms, results in simpler verification conditions than those generated by the original definition of linear forms.
Resumo:
There exists a remarkably close relationship between the operator algebra of the Dirac equation and the corresponding operators of the spinorial relativistic rotator (an indecomposable object lying on a mass-spin Regge trajectory). The analog of the Foldy-Wouthuysen transformation (more generally, the transformation between quasi-Newtonian and Minkowski coordinates) is constructed and explicit results are discussed for the spin and position operators. Zitterbewegung is shown to exist for a system having only positive energies.