930 resultados para Multilayer
Resumo:
Layer-by-layer (LBL) self-assembly is a simple and elegant method of constructing organic-inorganic composite thin films from environmentally benign aqueous solutions. In this paper, we utilize this method to develop proton-exchange membranes for fuel cells. The multilayer film is constructed onto the surface of sulfonated poly(arylene ether ketone) (SPAEK-COOH) membrane by LBL self-assembly of polycation chitosan (CTS) and negatively charged inorganic particle phosphotungstic acid (VIA). The highly conductive inorganic nanoparticles ensure SPAEK-COOH-(CTS/PTA)(n) membranes to maintain high proton conductivity values up to 0.086 S cm(-1) at 25 degrees C and 0.24S cm(-1) at 80 degrees C, which are superior than previous LBL assembled electrolyte systems.
Resumo:
Herein, an insulating fluorinated polyimide (F-PI) is utilized as an ultrathin buffer layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in polymer light-emitting diodes to enhance the device performance. The selective solubility of F-PI in common solvents avoids typical intermixing interfacial problems during the sequential multilayer spin-coating process. Compared to the control device, the F-PI modification causes the luminous and power efficiencies of the devices to be increased by a factor of 1.1 and 4.7, respectively, along with almost 3-fold device lifetime enhancement. Photovoltaic measurement, single-hole devices, and X-ray photoelectron spectroscopy, are utilized to investigate the underlying, mechanisms, and it is found that the hole injection barrier is lowered owing to the interactions between the PEDOT:PSS and F-PI. The F-PI modified PEDOT:PSS layer demonstrates step-up ionization potential profiles from the intrinsic bulk PEDOT:PSS side toward the F-PI-modified PEDOT:PSS surface, which facilitate the hole injection.
Resumo:
A new biocompatible film based on chitosan and poly(L-glutamic acid) (CS/PGA), created by alternate deposition of CS and PGA, was investigated. FT-IR spectroscopy, UV-vis spectroscopy and QCM were used to analyze the build-up process. The growth of CS and PGA deposition are both exponential to the deposition steps at first. After about 9 (CS/PGA) depositions, the exponential to linear transition takes place. QCM measurements combined with UV-vis spectra revealed the increase in the multilayer film growth at different pH (4.4, 5.0 and 5.5). The build-up of the multilayer stops after a few depositions at pH = 6.5. A muscle myoblast cell (C2C12) assay showed that (CS/PGA)(n) multilayer films obviously promote C2C12 attachment and growth.
Resumo:
In this work we present a permeable base transistor consisting of a 60 nm thick N,N'diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine layer or a 40 nm thick 2,6-diphenyl-indenofluorene layer as the emitter, a CalAl/Ca multilayer as the metal base, and p-Si as collector. In the base, the Ca layers are 5 nm thick and the Al layer was varied between 10 and 40 nm. the best results obtained with a 20 nm thick layer. The devices present common-base current gain with both organic layer and silicon acting as emitter, but there is only observable common-emitter current gain when the organic semiconductor acts as emitter. The obtained common-emitter current gain, similar to 2, is independent on collector-emitter voltage, base current and organic emitter in a reasonable wide interval. Air exposure or annealing of the base is necessary to achieve these characteristics, indicating that an oxide layer is beneficial to proper device operation.
Resumo:
We report a general method for incorporation of nanoparticles into polyelectrolyte multilayer (PEM) thin films by utilizing the excess charges and associated counterions present in the PEMs. Silver ions were introduced directly into multilayers assembled from poly(diallyldimethylammonium chloride) (PDDA) and poly(styrene sulfonate) (PSS), (PDDA/PSS)(n), by a rapid ion exchange process, which were then converted into silver nanoparticles via in situ reduction to create composite thin films. The size and the content of the nanoparticles in the film call be tuned by adjusting the ionic strength in the polyelectrolyte solutions used for the assembly. Spatial control over the distribution of the nanoparticles in the PEM was achieved via the use of multilayer heterostructure containing PDDA/PSS bilayer blocks assembled at different salt concentrations. Because excess charges and counterions are always present in any PEM, this approach can be applied to fabricate a wide variety of composite thin Films based on electrostatic self-assembly.
Resumo:
Counterions present at the surface of polyelectrolyte multilayers were utilized for the introduction of charged species into the multilayer via ion exchange. A typical polyelectrolyte multilayer film with Na+ counterions in the outermost layer was immersed in an AgNO3 aqueous solution and the rapid ion-exchange process was complete within 1 min. The silver ions thus introduced were then reduced in situ and silver nanoparticles were produced at the surface of the multilayer assembly. This example demonstrates that the counterions naturally occurring in every polyelectrolyte multilayer film can be a convenient vehicle for the introduction of various functionalities to the film.
Resumo:
Uniform MF/YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) composite microspheres have been prepared via a simple and economical wet-chemical route at ambient pressure and low temperature. Monodisperse micrometer-sized melamine formaldehyde (MF) colloidal particles were first fabricated by a condensation process of melamine with formaldehyde. Subsequently, well-dispersed YVO4 nanoparticles were successfully grown onto the MF microspheres to form core-shell structured composite particles in aqueous Solution. The as-obtained composite microspheres with perfect spherical shape are uniform in size and distribution, and the thickness and roughness of the YVO4 shells on MF cores could be tuned by varying the reaction temperature. The MF/YVO4:Ln(3+) composite phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel displays.
Resumo:
Herein, homogenously partial sulfonation of polystyrene (PSP) was performed. An effective electrochemiluminescence (ECL) sensor based on PSP with carbon nanotube (CNTs) composite film was developed. Cyclic voltammetry and electrochemical impendence spectroscopy were applied to characterize this composite film. The PSP was used as an immobilization matrix to entrap the ECL reagent Ru(bpy)(3)(2+) due to the electrostatic interactions between sulfonic acid groups and Ru(bpy)(3)(2+) cations. The introduction of CNTs into PSP acted not only as a conducting pathway to accelerate the electron transfer but also as a proper matrix to immobilize Ru(bpy)(3)(2+) on the electrode by hydrophobic interaction. Furthermore, the results indicated the ECL intensity produced at this composite film was over 3-fold compared with that of the pure PSP film due to the electrocatalytic activity of the CNTs. Such a sensor was verified by the sensitive determinations of 2-(dibutylamino)ethanol and tripropylamine.
Resumo:
One-step synthesis of Ru (bpy)(3) Cl-2-immobilized (bpy = 2,2'-bipyridine) silica nanoparticles (Ru-silica nanoparticles) for use in electrogenerated-chemiluminescence (ECL) detection is reported. Ru-silica nanoparticles are prepared by using the Stober method. Compared with free Ru(bpy)(3)Cl-2, Ru-silica nanoparticles are seen to exhibit a red-shift of the UV-vis absorbance peak and a longer fluorescence lifetime, which are attributed to the electrostatic interaction of Ru(bpy)(3)(2+) and silica. Because silica nanoparticles are used as immobilization matrices, the surfaces of Ru-silica nanoparticles are easily modified or functionalized via the assembly of other nanoparticles, such as Au. For ECL detection, Au-colloid-modified Ru-silica nanoparticles are immobilized on a 3-mercaptopropyl-trimethoxysilane-modified indium tin oxide electrode surface by Au-S interaction; the surface concentration of electroactive Ru(bpy)(3)Cl-2 is obviously higher than that in silica films.
Resumo:
Functionalized multiwalled carbon nanotubes (MWNTs) were selected as cross-linkers to construct three-dimensional (3D) porous nanoparticle/MWNT hybrid nanostructures by "bottom-up'' self-assembly. The resultant 3D hybrid nanostructure was different from that of metal nanoparticle multilayer assemblies prepared by traditional routes using small molecules or polymers as cross-linkers. The rigidity of the MWNTs resulted in only partial coverage of the nanoparticle surfaces between the linkers during the growth of multilayer film, providing more accessible surfaces to allow target molecules to adsorb on to and react with. HRP was used as a simple model to study the porosity of this assembly.
Resumo:
Supramolecular organized multilayers were constructed by multiwalled carbon nanotubes modified with ferrocene-derivatized poly(allylamine) redox polymer and glucose oxidase by electrostatic self-assembly. From the analysis of voltammetric signals and fluorescence results, a linear increment of the coverage of enzyme per bilayer was estimated, which demonstrated that the multilayer is constructed in a spatially ordered manner. The cyclic voltammograms obtained from the indium tin oxide (ITO) electrodes coated by the (Fc-PAH@CNT/GOx)(n) multilayers revealed that bioelectrocatalytic response is directly correlated to the number of deposited bilayers; that is, the sensitivity is tunable by controlling the number of bilayers associated with ITO electrodes. The incorporation of redox-polymer-functionalized carbon nanotubes (CNT) into enzyme films resulted in a 6-10-fold increase in the glucose electrocatalytic current; the bimolecular rate constant of FADH(2) oxidation (wiring efficiency) was increased up to 12-fold. Impedance spectroscopy data have yielded the electron diffusion coefficient (D-e) of this nanostructure to be over 10(-8) cm(2) s(-1), which is typically higher than those systems without CNT by at least a factor of 10, indicating that electron transport in the new supramolecular architecture was enhanced by communication of the redox active site of enzyme, redox polymer, and CNT.
Resumo:
A novel method based on electrostatic layer-by-layer self-assembly (LBL) technique for alternate assemblies of polyelectrolyte functionalized multi-walled carbon nanotubes (MWNTs) and platinum nanoparticles (PtNPs) is proposed. The shortened MWNTs can be functionalized with positively charged poly(diallyldimethylammonium chloride) (PDDA) based on electrostatic interaction. Through electrostatic layer-by-layer assembly, the positively charged PDDA functionalized MWNTs (PDWNTs) and negatively charged citrate-stabilized PtNPs were alternately assembled on a 3-mercaptopropanesulfonic sodium (NIPS) modified gold electrode and also on other negatively charged surface, e.g. quartz slide and indium-tin-oxide (ITO) plate, directly forming the three-dimensional (3D) nanostructured materials. This is a very general and powerful technique for the assembling three-dimensional nanostructured materials containing carbon nanotubes (CNTs) and nanoparticles. Thus prepared multilayer films were characterized by ultraviolet-visiblenear-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). Regular growth of the mutilayer films is monitored by UV-vis-NIR.
Resumo:
Carbon nanotubes paste (CNTP) electrode was prepared with multi-walled carbon nanotubes and methyl silicone oil. Polyoxometalates (POMs) were assembled on the electrode surface with different methods, and investigated by cyclic voltammetry and Raman spectroscopy. Experiments showed that POMs/CNTP electrode prepared by direct method had better performance. K6P2Mo18O62 center dot 14H(2)O (P2Mo18) assembled CNTP electrode (P2Mo18/CNTP) electrode possessed good reversibility and could catalyze the reduction of bromate and iodate in 0.1 M H2SO4 Solution. Further, the multilayer films of P2Mo18 assembled CNTP electrodes were fabricated by layer-by-layer technique, which showed higher electrocatalytic activities. All these POMs assembled CNTP electrodes prepared exhibited good stability.
Resumo:
Through electrostatic layer-by-layer (LbL) assembly, negatively charged calf thymus double stranded DNA (CTds-DNA), and positively charged Zr4+ ions were alternately deposited on gold substrate modified with chemisorbed cysteamine. Thus-prepared three-dimensional DNA networks were characterized by surface plasmon resonance (SPR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IR-RAS). SPR spectroscopy indicates that the effective thickness of DNA monolayer in the (DNA/Zr4+), bilayer was 1.5 +/- 0.1 nm, which corresponds to the surface coverage of 79% of its full packed monolayer. At the same time, a linear increase of film thickness with increasing number of layers was also confirmed by SPR characterizations. The data of XPS and IR-RAS show that Zr4+ ions interact with both the phosphate groups and nitrogenous bases of DNA and load into the framework of DNA. Furthermore, the interactions between this composite film and heme protein cytochrome c (Cyt c) were investigated by SPR spectroscopy and electrochemistry.
Resumo:
Based on the electrostatic attraction Keggin-type polyoxometalate H4SiW12O40 (SiW12) and small molecule 4-aminobenzo-15-crown-5 ether (4-AB15C5) were alternately deposited on poly (allylamine hydrochloride) (PAH)-derived indium tin oxide (ITO) substrate through a layer-by-layer (LBL) self-assembly, forming a supramolecular multilayer film (film-A). SiW12 was also deposited on a glassy carbon electrode (GCE) derived by 4-AB15C5 via covalent bonding in 0.1 M NaCl aqueous solution and formed a composite monolayer film (film-B). UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy measurements demonstrated that the interactions between SiW12 and 4-AB15C5 in both two film electrodes were the same and caused by the bridging action of oxonium ions. But, the nanostructure in the two film electrodes was different. 4-AB15C5 in film-A was oriented horizontally to ITO substrate, however, that in film-B was oriented vertically to GCE. Namely film-A corresponded to a layer structure, and film-B corresponded to an intercalation structure.