852 resultados para Intelligent systems
Resumo:
Improving safety at railway level crossings is an important issue for the Australian transport system. Governments, the rail industry and road organisations have tried a variety of countermeasures for many years to improve railway level crossing safety. New types of Intelligent Transport System (ITS) interventions are now emerging due to the availability and the affordability of technology. These interventions target both actively and passively protected railway level crossings and attempt to address drivers’ errors at railway crossings, which are mainly a failure to detect the crossing or the train and misjudgement of the train approach speed and distance. This study aims to assess the effectiveness of three emerging ITS that the rail industry considers implementing in Australia: a visual in-vehicle ITS, an audio in-vehicle ITS, as well as an on-road flashing beacons intervention. The evaluation was conducted on an advanced driving simulator with 20 participants per trialled technology, each participant driving once without any technology and once with one of the ITS interventions. Every participant drove through a range of active and passive crossings with and without trains approaching. Their speed approach of the crossing, head movements and stopping compliance were measured. Results showed that driver behaviour was changed with the three ITS interventions at passive crossings, while limited effects were found at active crossings, even with reduced visibility. The on-road intervention trialled was unsuccessful in improving driver behaviour; the audio and visual ITS improved driver behaviour when a train was approaching. A trend toward worsening driver behaviour with the visual ITS was observed when no trains were approaching. This trend was not observed for the audio ITS intervention, which appears to be the ITS intervention with the highest potential for improving safety at passive crossings.
Resumo:
Programming is a subject that many beginning students find difficult. The PHP Intelligent Tutoring System (PHP ITS) has been designed with the aim of making it easier for novices to learn the PHP language in order to develop dynamic web pages. Programming requires practice. This makes it necessary to include practical exercises in any ITS that supports students learning to program. The PHP ITS works by providing exercises for students to solve and then providing feedback based on their solutions. The major challenge here is to be able to identify many semantically equivalent solutions to a single exercise. The PHP ITS achieves this by using theories of Artificial Intelligence (AI) including first-order predicate logic and classical and hierarchical planning to model the subject matter taught by the system. This paper highlights the approach taken by the PHP ITS to analyse students’ programs that include a number of program constructs that are used by beginners of web development. The PHP ITS was built using this model and evaluated in a unit at the Queensland University of Technology. The results showed that it was capable of correctly analysing over 96 % of the solutions to exercises supplied by students.
Resumo:
This chapter is focussed on the research and development of an intelligent driver warning system (IDWS) as a means to improve road safety and driving comfort. Two independent IDWS case studies are presented. The first study examines the methodology and implementation for attentive visual tracking and trajectory estimation for dynamic scene segmentation problems. In the second case study, the concept of driver modelling is evaluated which can be used to provide useful feedback to drivers. In both case studies, the quality of IDWS is largely determined by the modelling capability for estimating multiple vehicle trajectories and modelling driving behaviour. A class of modelling techniques based on neural-fuzzy systems, which exhibits provable learning and modelling capability, is proposed. For complex modelling problems where the curse of dimensionality becomes an issue, a network construction algorithm based on Adaptive Spline Modelling of Observation Data (ASMOD) is also proposed.
Resumo:
This paper presents a new approach for assessing power system voltage stability based on artificial feed forward neural network (FFNN). The approach uses real and reactive power, as well as voltage vectors for generators and load buses to train the neural net (NN). The input properties of the NN are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The performance of the trained NN is investigated on two systems under various voltage stability assessment conditions. Main advantage is that the proposed approach is fast, robust, accurate and can be used online for predicting the L-indices of all the power system buses simultaneously. The method can also be effectively used to determining local and global stability margin for further improvement measures.
Resumo:
Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.
Resumo:
In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. In this paper, a novel job shop approach is proposed to create a more efficient integrated harvesting and sugarcane transport scheduling system to reduce the cost of sugarcane transport. There are several benefits that can be attained by treating the train scheduling problem as a job shop problem. Job shop is generic and suitable for all trains scheduling problems. Job shop technique prevents operating two trains on one section at the same time because it considers that the section or the machine is unique. This technique is more promising to find better solutions in reasonable computation times.
Resumo:
With the development of wearable and mobile computing technology, more and more people start using sleep-tracking tools to collect personal sleep data on a daily basis aiming at understanding and improving their sleep. While sleep quality is influenced by many factors in a person’s lifestyle context, such as exercise, diet and steps walked, existing tools simply visualize sleep data per se on a dashboard rather than analyse those data in combination with contextual factors. Hence many people find it difficult to make sense of their sleep data. In this paper, we present a cloud-based intelligent computing system named SleepExplorer that incorporates sleep domain knowledge and association rule mining for automated analysis on personal sleep data in light of contextual factors. Experiments show that the same contextual factors can play a distinct role in sleep of different people, and SleepExplorer could help users discover factors that are most relevant to their personal sleep.
Resumo:
Control centers (CC) play a very important role in power system operation. An overall view of the system with information about all existing resources and needs is implemented through SCADA (Supervisory control and data acquisition system) and an EMS (energy management system). As advanced technologies have made their way into the utility environment, the operators are flooded with huge amount of data. The last decade has seen extensive applications of AI techniques, knowledge-based systems, Artificial Neural Networks in this area. This paper focuses on the need for development of an intelligent decision support system to assist the operator in making proper decisions. The requirements for realization of such a system are recognized for the effective operation and energy management of the southern grid in India The application of Petri nets leading to decision support system has been illustrated considering 24 bus system that is a part of southern grid.