749 resultados para Fuzzy Sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonparametric probability estimation procedure using the fuzzy ARTMAP neural network is here described. Because the procedure does not make a priori assumptions about underlying probability distributions, it yields accurate estimates on a wide variety of prediction tasks. Fuzzy ARTMAP is used to perform probability estimation in two different modes. In a 'slow-learning' mode, input-output associations change slowly, with the strength of each association computing a conditional probability estimate. In 'max-nodes' mode, a fixed number of categories are coded during an initial fast learning interval, and weights are then tuned by slow learning. Simulations illustrate system performance on tasks in which various numbers of clusters in the set of input vectors mapped to a given class.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows how knowledge, in the form of fuzzy rules, can be derived from a self-organizing supervised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in two stages: pruning removes those recognition nodes whose confidence index falls below a selected threshold; and quantization of continuous learned weights allows the final system state to be translated into a usable set of rules. Simulations on a medical prediction problem, the Pima Indian Diabetes (PID) database, illustrate the method. In the simulations, pruned networks about 1/3 the size of the original actually show improved performance. Quantization yields comprehensible rules with only slight degradation in test set prediction performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrinsic and extrinsic speaker normalization methods are systematically compared using a neural network (fuzzy ARTMAP) and L1 and L2 K-Nearest Neighbor (K-NN) categorizers trained and tested on disjoint sets of speakers of the Peterson-Barney vowel database. Intrinsic methods include one nonscaled, four psychophysical scales (bark, bark with endcorrection, mel, ERB), and three log scales, each tested on four combinations of F0 , F1, F2, F3. Extrinsic methods include four speaker adaptation schemes, each combined with the 32 intrinsic methods: centroid subtraction across all frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear transformation (LT). ARTMAP and KNN show similar trends, with K-NN performing better, but requiring about ten times as much memory. The optimal intrinsic normalization method is bark scale, or bark with endcorrection, using the differences between all frequencies (Diff All). The order of performance for the extrinsic methods is LT, CSi, LS, and CS, with fuzzy ARTMAP performing best using bark scale with Diff All; and K-NN choosing psychophysical measures for all except CSi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An incremental, nonparametric probability estimation procedure using the fuzzy ARTMAP neural network is introduced. In slow-learning mode, fuzzy ARTMAP searches for patterns of data on which to build ever more accurate estimates. In max-nodes mode, the network initially learns a fixed number of categories, and weights are then adjusted gradually.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or multi-sensor, data fusion. Fusion ARTMAP generalizes the fuzzy ARTMAP architecture in order to adaptively classify multi-channel data. The network has a symmetric organization such that each channel can be dynamically configured to serve as either a data input or a teaching input to the system. An ART module forms a compressed recognition code within each channel. These codes, in turn, beco1ne inputs to a single ART system that organizes the global recognition code. When a predictive error occurs, a process called parallel match tracking simultaneously raises vigilances in multiple ART modules until reset is triggered in one of thmn. Parallel match tracking hereby resets only that portion of the recognition code with the poorest match, or minimum predictive confidence. This internally controlled selective reset process is a type of credit assignment that creates a parsimoniously connected learned network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fuzzy ART system introduced herein incorporates computations from fuzzy set theory into ART 1. For example, the intersection (n) operator used in ART 1 learning is replaced by the MIN operator (A) of fuzzy set theory. Fuzzy ART reduces to ART 1 in response to binary input vectors, but can also learn stable categories in response to analog input vectors. In particular, the MIN operator reduces to the intersection operator in the binary case. Learning is stable because all adaptive weights can only decrease in time. A preprocessing step, called complement coding, uses on-cell and off-cell responses to prevent category proliferation. Complement coding normalizes input vectors while preserving the amplitudes of individual feature activations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural network realization of the fuzzy Adaptive Resonance Theory (ART) algorithm is described. Fuzzy ART is capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns, thus enabling the network to learn both analog and binary input patterns. In the neural network realization of fuzzy ART, signal transduction obeys a path capacity rule. Category choice is determined by a combination of bottom-up signals and learned category biases. Top-down signals impose upper bounds on feature node activations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. METHODOLOGY: The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. PRINCIPAL FINDINGS: The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. CONCLUSIONS: Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O uso cada vez mais intenso de conceitos subjetivos - provenientes da lógica fuzzy - aplicados a problemas reais nos motivou a desenvolver procedimentos para a introdução destas idéias no âmbito do ensino médio. O projeto propõe inicialmente o estudo de conjuntos fuzzy que podem ser entendidos com exemplos - de variação populacional, de controle de pragas e de epidemias. Posteriormente, usar as “operações fuzzy” Sup e Inf em produtos de matrizes para realizar diagnósticos e avaliações subjetivas. As situações abordadas já estão na literatura (Barros e Bassanezi, 2006), entretanto não como fonte para o Ensino Médio. Um dos objetivos principais deste trabalho é contrapor a crença de exatidão da matemática clássica com os resultados provenientes de lógica subjetiva, utilizando conceitos apropriados para os estudantes destas séries: teoria dos conjuntos, relações e funções, matrizes, equações de diferenças e outros.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the current study was to evaluate the potential of the dynamic lipolysis model to simulate the absorption of a poorly soluble model drug compound, probucol, from three lipid-based formulations and to predict the in vitro-in vivo correlation (IVIVC) using neuro-fuzzy networks. An oil solution and two self-micro and nano-emulsifying drug delivery systems were tested in the lipolysis model. The release of probucol to the aqueous (micellar) phase was monitored during the progress of lipolysis. These release profiles compared with plasma profiles obtained in a previous bioavailability study conducted in mini-pigs at the same conditions. The release rate and extent of release from the oil formulation were found to be significantly lower than from SMEDDS and SNEDDS. The rank order of probucol released (SMEDDS approximately SNEDDS > oil formulation) was similar to the rank order of bioavailability from the in vivo study. The employed neuro-fuzzy model (AFM-IVIVC) achieved significantly high prediction ability for different data formations (correlation greater than 0.91 and prediction error close to zero), without employing complex configurations. These preliminary results suggest that the dynamic lipolysis model combined with the AFM-IVIVC can be a useful tool in the prediction of the in vivo behavior of lipid-based formulations.