901 resultados para Data dissemination and sharing
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
The R package EasyStrata facilitates the evaluation and visualization of stratified genome-wide association meta-analyses (GWAMAs) results. It provides (i) statistical methods to test and account for between-strata difference as a means to tackle gene-strata interaction effects and (ii) extended graphical features tailored for stratified GWAMA results. The software provides further features also suitable for general GWAMAs including functions to annotate, exclude or highlight specific loci in plots or to extract independent subsets of loci from genome-wide datasets. It is freely available and includes a user-friendly scripting interface that simplifies data handling and allows for combining statistical and graphical functions in a flexible fashion. AVAILABILITY: EasyStrata is available for free (under the GNU General Public License v3) from our Web site www.genepi-regensburg.de/easystrata and from the CRAN R package repository cran.r-project.org/web/packages/EasyStrata/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Resumo:
Diplomityössä tutkitaan keinoja brändätä ja varioida S60-ohjelmistoja dynaamisesti ja ajonaikaisesti. S60 on kehitysalusta, jota käyttävät useat puhelinvalmistajat ja heidän puhelimiaan käyttävät lukuisat eri operaattorit. Operaattorit haluavat puhelimiensa tai osan puhelimen sovelluksista erottuvan kilpailijoista heidän omalla brändillään ja tämän takia täytyy olla keinot joko koko puhelimen, tai valittujen sovellusten brändäykselle. Osa sovelluksista saatetaan haluta vaihtavan käytettyä brändiä sen käyttämien resurssien, kuten verkkopalvelimen, mukaan. Variointidataa tulee myös pystyä jakamaan eri sovellusten tai sovellusten osien kesken. Työssä esitellään Symbian käyttöjärjestelmä ja S60 kehitysympäristö, sekä pohditaan Symbianin turvallisuuskäytäntöjen tuomia haasteita variointidatan jakamiseen eri sovellusten välillä. Olemassaolevia variointitapoja tutkitaan työn mahdolliseksi pohjaksi. Työ sisältää esittelyn projektista, jossa kehitettiin erään S60 sovelluksen dynaaminen brändäystoteutus, joka myös mahdollistaa variointidatan jakamisen eri sovellusten kanssa.
Resumo:
CONTEXT: Subclinical hypothyroidism has been associated with increased risk of coronary heart disease (CHD), particularly with thyrotropin levels of 10.0 mIU/L or greater. The measurement of thyroid antibodies helps predict the progression to overt hypothyroidism, but it is unclear whether thyroid autoimmunity independently affects CHD risk. OBJECTIVE: The objective of the study was to compare the CHD risk of subclinical hypothyroidism with and without thyroid peroxidase antibodies (TPOAbs). DATA SOURCES AND STUDY SELECTION: A MEDLINE and EMBASE search from 1950 to 2011 was conducted for prospective cohorts, reporting baseline thyroid function, antibodies, and CHD outcomes. DATA EXTRACTION: Individual data of 38 274 participants from six cohorts for CHD mortality followed up for 460 333 person-years and 33 394 participants from four cohorts for CHD events. DATA SYNTHESIS: Among 38 274 adults (median age 55 y, 63% women), 1691 (4.4%) had subclinical hypothyroidism, of whom 775 (45.8%) had positive TPOAbs. During follow-up, 1436 participants died of CHD and 3285 had CHD events. Compared with euthyroid individuals, age- and gender-adjusted risks of CHD mortality in subclinical hypothyroidism were similar among individuals with and without TPOAbs [hazard ratio (HR) 1.15, 95% confidence interval (CI) 0.87-1.53 vs HR 1.26, CI 1.01-1.58, P for interaction = .62], as were risks of CHD events (HR 1.16, CI 0.87-1.56 vs HR 1.26, CI 1.02-1.56, P for interaction = .65). Risks of CHD mortality and events increased with higher thyrotropin, but within each stratum, risks did not differ by TPOAb status. CONCLUSIONS: CHD risk associated with subclinical hypothyroidism did not differ by TPOAb status, suggesting that biomarkers of thyroid autoimmunity do not add independent prognostic information for CHD outcomes.
Resumo:
Kiihtyvä kilpailu yritysten välillä on tuonut yritykset vaikeidenhaasteiden eteen. Tuotteet pitäisi saada markkinoille nopeammin, uusien tuotteiden pitäisi olla parempia kuin vanhojen ja etenkin parempia kuin kilpailijoiden vastaavat tuotteet. Lisäksi tuotteiden suunnittelu-, valmistus- ja muut kustannukset eivät saisi olla suuria. Näiden haasteiden toteuttamisessa yritetään usein käyttää apuna tuotetietoja, niiden hallintaa ja vaihtamista. Andritzin, kuten muidenkin yritysten, on otettava nämä asiat huomioon pärjätäkseen kilpailussa. Tämä työ on tehty Andritzille, joka on maailman johtavia paperin ja sellun valmistukseen tarkoitettujen laitteiden valmistajia ja huoltopalveluiden tarjoajia. Andritz on ottamassa käyttöön ERP-järjestelmän kaikissa toimipisteissään. Sitä halutaan hyödyntää mahdollisimman tehokkaasti, joten myös tuotetiedot halutaan järjestelmään koko elinkaaren ajalta. Osan tuotetiedoista luo Andritzin kumppanit ja alihankkijat, joten myös tietojen vaihto partnereiden välillä halutaan hoitaasiten, että tiedot saadaan suoraan ERP-järjestelmään. Tämän työn tavoitteena onkin löytää ratkaisu, jonka avulla Andritzin ja sen kumppaneiden välinen tietojenvaihto voidaan hoitaa. Tämä diplomityö esittelee tuotetietojen, niiden hallinnan ja vaihtamisen tarkoituksen ja tärkeyden. Työssä esitellään erilaisia ratkaisuvaihtoehtoja tiedonvaihtojärjestelmän toteuttamiseksi. Osa niistä perustuu yleisiin ja toimialakohtaisiin standardeihin. Myös kaksi kaupallista tuotetta esitellään. Tarkasteltavana onseuraavat standardit: PaperIXI, papiNet, X-OSCO, PSK-standardit sekä RosettaNet. Lisäksi työssä tarkastellaan ERP-järjestelmän toimittajan, SAP:in ratkaisuja tietojenvaihtoon. Näistä vaihtoehdoista parhaimpia tarkastellaan vielä yksityiskohtaisemmin ja lopuksi eri ratkaisuja vertaillaan keskenään, jotta löydettäisiin Andritzin tarpeisiin paras vaihtoehto.
Resumo:
Résumé: L'automatisation du séquençage et de l'annotation des génomes, ainsi que l'application à large échelle de méthodes de mesure de l'expression génique, génèrent une quantité phénoménale de données pour des organismes modèles tels que l'homme ou la souris. Dans ce déluge de données, il devient très difficile d'obtenir des informations spécifiques à un organisme ou à un gène, et une telle recherche aboutit fréquemment à des réponses fragmentées, voir incomplètes. La création d'une base de données capable de gérer et d'intégrer aussi bien les données génomiques que les données transcriptomiques peut grandement améliorer la vitesse de recherche ainsi que la qualité des résultats obtenus, en permettant une comparaison directe de mesures d'expression des gènes provenant d'expériences réalisées grâce à des techniques différentes. L'objectif principal de ce projet, appelé CleanEx, est de fournir un accès direct aux données d'expression publiques par le biais de noms de gènes officiels, et de représenter des données d'expression produites selon des protocoles différents de manière à faciliter une analyse générale et une comparaison entre plusieurs jeux de données. Une mise à jour cohérente et régulière de la nomenclature des gènes est assurée en associant chaque expérience d'expression de gène à un identificateur permanent de la séquence-cible, donnant une description physique de la population d'ARN visée par l'expérience. Ces identificateurs sont ensuite associés à intervalles réguliers aux catalogues, en constante évolution, des gènes d'organismes modèles. Cette procédure automatique de traçage se fonde en partie sur des ressources externes d'information génomique, telles que UniGene et RefSeq. La partie centrale de CleanEx consiste en un index de gènes établi de manière hebdomadaire et qui contient les liens à toutes les données publiques d'expression déjà incorporées au système. En outre, la base de données des séquences-cible fournit un lien sur le gène correspondant ainsi qu'un contrôle de qualité de ce lien pour différents types de ressources expérimentales, telles que des clones ou des sondes Affymetrix. Le système de recherche en ligne de CleanEx offre un accès aux entrées individuelles ainsi qu'à des outils d'analyse croisée de jeux de donnnées. Ces outils se sont avérés très efficaces dans le cadre de la comparaison de l'expression de gènes, ainsi que, dans une certaine mesure, dans la détection d'une variation de cette expression liée au phénomène d'épissage alternatif. Les fichiers et les outils de CleanEx sont accessibles en ligne (http://www.cleanex.isb-sib.ch/). Abstract: The automatic genome sequencing and annotation, as well as the large-scale gene expression measurements methods, generate a massive amount of data for model organisms. Searching for genespecific or organism-specific information througout all the different databases has become a very difficult task, and often results in fragmented and unrelated answers. The generation of a database which will federate and integrate genomic and transcriptomic data together will greatly improve the search speed as well as the quality of the results by allowing a direct comparison of expression results obtained by different techniques. The main goal of this project, called the CleanEx database, is thus to provide access to public gene expression data via unique gene names and to represent heterogeneous expression data produced by different technologies in a way that facilitates joint analysis and crossdataset comparisons. A consistent and uptodate gene nomenclature is achieved by associating each single gene expression experiment with a permanent target identifier consisting of a physical description of the targeted RNA population or the hybridization reagent used. These targets are then mapped at regular intervals to the growing and evolving catalogues of genes from model organisms, such as human and mouse. The completely automatic mapping procedure relies partly on external genome information resources such as UniGene and RefSeq. The central part of CleanEx is a weekly built gene index containing crossreferences to all public expression data already incorporated into the system. In addition, the expression target database of CleanEx provides gene mapping and quality control information for various types of experimental resources, such as cDNA clones or Affymetrix probe sets. The Affymetrix mapping files are accessible as text files, for further use in external applications, and as individual entries, via the webbased interfaces . The CleanEx webbased query interfaces offer access to individual entries via text string searches or quantitative expression criteria, as well as crossdataset analysis tools, and crosschip gene comparison. These tools have proven to be very efficient in expression data comparison and even, to a certain extent, in detection of differentially expressed splice variants. The CleanEx flat files and tools are available online at: http://www.cleanex.isbsib. ch/.
Resumo:
Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.
Resumo:
OBJECTIVE: The objective was to determine the risk of stroke associated with subclinical hypothyroidism. DATA SOURCES AND STUDY SELECTION: Published prospective cohort studies were identified through a systematic search through November 2013 without restrictions in several databases. Unpublished studies were identified through the Thyroid Studies Collaboration. We collected individual participant data on thyroid function and stroke outcome. Euthyroidism was defined as TSH levels of 0.45-4.49 mIU/L, and subclinical hypothyroidism was defined as TSH levels of 4.5-19.9 mIU/L with normal T4 levels. DATA EXTRACTION AND SYNTHESIS: We collected individual participant data on 47 573 adults (3451 subclinical hypothyroidism) from 17 cohorts and followed up from 1972-2014 (489 192 person-years). Age- and sex-adjusted pooled hazard ratios (HRs) for participants with subclinical hypothyroidism compared to euthyroidism were 1.05 (95% confidence interval [CI], 0.91-1.21) for stroke events (combined fatal and nonfatal stroke) and 1.07 (95% CI, 0.80-1.42) for fatal stroke. Stratified by age, the HR for stroke events was 3.32 (95% CI, 1.25-8.80) for individuals aged 18-49 years. There was an increased risk of fatal stroke in the age groups 18-49 and 50-64 years, with a HR of 4.22 (95% CI, 1.08-16.55) and 2.86 (95% CI, 1.31-6.26), respectively (p trend 0.04). We found no increased risk for those 65-79 years old (HR, 1.00; 95% CI, 0.86-1.18) or ≥ 80 years old (HR, 1.31; 95% CI, 0.79-2.18). There was a pattern of increased risk of fatal stroke with higher TSH concentrations. CONCLUSIONS: Although no overall effect of subclinical hypothyroidism on stroke could be demonstrated, an increased risk in subjects younger than 65 years and those with higher TSH concentrations was observed.
Resumo:
Tutkimuksen ensisijaisena tavoitteena oli tarkastella luottamuksen rakentumista virtuaalitiimissä. Keskeistä tarkastelussa olivat luottamuksen lähteiden löytäminen, suhteen rakentuminen sekä teknologiavälitteinen kommunikaatio. Myös käytännön keinoja ja sovelluksia etsittiin. Tässä tutkimuksessa luottamus nähtiin tärkeänä yhteistyön mahdollistajana sekä keskeisenä elementtinä ihmisten välisten suhteiden rakentumisessa. Tämä tutkimus oli empiirinen ja kuvaileva tapaustutkimus. Tutkimuksessa kvalitatiivista aineistoa kerättiin pääasiassa web-pohjaisen kyselyn sekä puhelinhaastattelun avulla. Aineistonkeruu toteutettiin siis pääasiassa virtuaalisesti. Saatu aineisto analysoitiin teemoittelun avulla. Tässä työssä teemoja etsittiin tekstistä pääasiassa teoriasta johdettujen oletusten perusteella. Tutkimuksen tuloksena oli, että luottamusta rakentavia mekanismeja ovat, karkeasti luokiteltuna, yhteiset päämäärät ja vastuut, kommunikaatio, sosiaalinen kanssakäyminen ja informaation jakaminen, toisten huomioiminen ja henkilökohtaiset ominaisuudet. Mekanismit eivät suuresti eronneet luottamuksen rakentumisen mekanismeista perinteisessä kontekstissa. Virtuaalitiimityön alkuvaiheessa luottamus pohjautui käsityksille toisten tiimin jäsenten kyvykkyydestä. Myös institutionaalinen identifioituminen loi pohjaa luottamukselle alkuvaiheessa. Muuten luottamus rakentui vähän kerrassaan tehtävään liittyvän kommunikaation ja sosiaalisen kommunikaation kautta. Tekojen merkitys korostui erityisesti ajan myötä. Työssä esitettiin myös käytännön keinoja luottamuksen rakentamiseksi. Olemassa olevien teknologioiden havaittiin tukevan hyvin suhteen rakentumista tiedon jakamiseen ja sen varastoimiseen liittyvissä tehtävissä. Sen sijaan vuorovaikutuksen näkökulmasta tuen ei nähty olevan yhtä kattavaa. Kaiken kaikkiaan kuitenkin parannuksella sosiaalisissa suhteissa voitaneen saada enemmän aikaan kuin parannuksilla teknologian suhteen.
Resumo:
Monte Carlo simulations were used to generate data for ABAB designs of different lengths. The points of change in phase are randomly determined before gathering behaviour measurements, which allows the use of a randomization test as an analytic technique. Data simulation and analysis can be based either on data-division-specific or on common distributions. Following one method or another affects the results obtained after the randomization test has been applied. Therefore, the goal of the study was to examine these effects in more detail. The discrepancies in these approaches are obvious when data with zero treatment effect are considered and such approaches have implications for statistical power studies. Data-division-specific distributions provide more detailed information about the performance of the statistical technique.
Resumo:
The recent trend for journals to require open access to primary data included in publications has been embraced by many biologists, but has caused apprehension amongst researchers engaged in long-term ecological and evolutionary studies. A worldwide survey of 73 principal investigators (Pls) with long-term studies revealed positive attitudes towards sharing data with the agreement or involvement of the PI, and 93% of PIs have historically shared data. Only 8% were in favor of uncontrolled, open access to primary data while 63% expressed serious concern. We present here their viewpoint on an issue that can have non-trivial scientific consequences. We discuss potential costs of public data archiving and provide possible solutions to meet the needs of journals and researchers.
Resumo:
There are two main objects in this study: First, to prove the importance of data accuracy to the business success, and second, create a tool for observing and improving the accuracy of ERP systems production master data. Sub-objective is to explain the need for new tool in client company and the meaning of it for the company. In the theoretical part of this thesis the focus is in stating the importance of data accuracy in decision making and it's implications on business success. Also basics of manufacturing planning are introduced in order to explain the key vocabulary. In the empirical part the client company and its need for this study is introduced. New master data report is introduced, and finally, analysing the report and actions based on the results of analysis are explained. The main results of this thesis are finding the interdependence between data accuracy and business success, and providing a report for continuous master data improvement in the client company's ERP system.
Resumo:
The purpose of the work was to realize a high-speed digital data transfer system for RPC muon chambers in the CMS experiment on CERN’s new LHC accelerator. This large scale system took many years and many stages of prototyping to develop, and required the participation of tens of people. The system interfaces to Frontend Boards (FEB) at the 200,000-channel detector and to the trigger and readout electronics in the control room of the experiment. The distance between these two is about 80 metres and the speed required for the optic links was pushing the limits of available technology when the project was started. Here, as in many other aspects of the design, it was assumed that the features of readily available commercial components would develop in the course of the design work, just as they did. By choosing a high speed it was possible to multiplex the data from some the chambers into the same fibres to reduce the number of links needed. Further reduction was achieved by employing zero suppression and data compression, and a total of only 660 optical links were needed. Another requirement, which conflicted somewhat with choosing the components a late as possible was that the design needed to be radiation tolerant to an ionizing dose of 100 Gy and to a have a moderate tolerance to Single Event Effects (SEEs). This required some radiation test campaigns, and eventually led to ASICs being chosen for some of the critical parts. The system was made to be as reconfigurable as possible. The reconfiguration needs to be done from a distance as the electronics is not accessible except for some short and rare service breaks once the accelerator starts running. Therefore reconfigurable logic is extensively used, and the firmware development for the FPGAs constituted a sizable part of the work. Some special techniques needed to be used there too, to achieve the required radiation tolerance. The system has been demonstrated to work in several laboratory and beam tests, and now we are waiting to see it in action when the LHC will start running in the autumn 2008.
Resumo:
Breast cancer is the most common diagnosed cancer and the leading cause of cancer death among females worldwide. It is considered a highly heterogeneous disease and it must be classified into more homogeneous groups. Hence, the purpose of this study was to classify breast tumors based on variations in gene expression patterns derived from RNA sequencing by using different class discovery methods. 42 breast tumors paired-samples were sequenced by Illumine Genome Analyzer and the data was analyzed and prepared by TopHat2 and htseq-count. As reported previously, breast cancer could be grouped into five main groups known as basal epithelial-like group, HER2 group, normal breast-like group and two Luminal groups with a distinctive expression profile. Classifying breast tumor samples by using PAM50 method, the most common subtype was Luminal B and was significantly associated with ESR1 and ERBB2 high expression. Luminal A subtype had ESR1 and SLC39A6 significant high expression, whereas HER2 subtype had a high expression of ERBB2 and CNNE1 genes and low luminal epithelial gene expression. Basal-like and normal-like subtypes were associated with low expression of ESR1, PgR and HER2, and had significant high expression of cytokeratins 5 and 17. Our results were similar compared with TGCA breast cancer data results and with known studies related with breast cancer classification. Classifying breast tumors could add significant prognostic and predictive information to standard parameters, and moreover, identify marker genes for each subtype to find a better therapy for patients with breast cancer.
Resumo:
Especially in global enterprises, key data is fragmented in multiple Enterprise Resource Planning (ERP) systems. Thus the data is inconsistent, fragmented and redundant across the various systems. Master Data Management (MDM) is a concept, which creates cross-references between customers, suppliers and business units, and enables corporate hierarchies and structures. The overall goal for MDM is the ability to create an enterprise-wide consistent data model, which enables analyzing and reporting customer and supplier data. The goal of the study was defining the properties and success factors of a master data system. The theoretical background was based on literature and the case consisted of enterprise specific needs and demands. The theoretical part presents the concept, background, and principles of MDM and then the phases of system planning and implementation project. Case consists of background, definition of as is situation, definition of project, evaluation criterions and concludes the key results of the thesis. In the end chapter Conclusions combines common principles with the results of the case. The case part ended up dividing important factors of the system in success factors, technical requirements and business benefits. To clarify the project and find funding for the project, business benefits have to be defined and the realization has to be monitored. The thesis found out six success factors for the MDM system: Well defined business case, data management and monitoring, data models and structures defined and maintained, customer and supplier data governance, delivery and quality, commitment, and continuous communication with business. Technical requirements emerged several times during the thesis and therefore those can’t be ignored in the project. Conclusions chapter goes through these factors on a general level. The success factors and technical requirements are related to the essentials of MDM: Governance, Action and Quality. This chapter could be used as guidance in a master data management project.