894 resultados para DISTRIBUTED-FEEDBACK LASER
Resumo:
GMPLS is a generalized form of MPLS (MultiProtocol Label Switching). MPLS is IP packet based and it uses MPLS-TE for Packet Traffic Engineering. GMPLS is extension to MPLS capabilities. It provides separation between transmission, control and management plane and network management. Control plane allows various applications like traffic engineering, service provisioning, and differentiated services. GMPLS control plane architecture includes signaling (RSVP-TE, CR-LDP) and routing (OSPF-TE, ISIS-TE) protocols. This paper provides an overview of the signaling protocols, describes their main functionalities, and provides a general evaluation of both the protocols.
Resumo:
This paper proposes the use of optical flow from a moving robot to provide force feedback to an operator’s joystick to facilitate collision free teleoperation. Optical flow is measured by a pair of wide angle cameras on board the vehicle and used to generate a virtual environmental force that is reflected to the user through the joystick, as well as feeding back into the control of the vehicle. We show that the proposed control is dissipative and prevents the vehicle colliding with the environment as well as providing the operator with a natural feel for the remote environment. Experimental results are provided on the InsectBot holonomic vehicle platform.
Resumo:
This paper proposes the use of optical flow from a moving robot to provide force feedback to an operator's joystick to facilitate collision free teleoperation. Optic flow is measured by wide angle cameras on board the vehicle and used to generate a virtual environmental force that is reflected to the user through the joystick, as well as feeding back into the control of the vehicle. The coupling between optical flow (velocity) and force is modelled as an impedance - in this case an optical impedance. We show that the proposed control is dissipative and prevents the vehicle colliding with the environment as well as providing the operator with a natural feel for the remote environment. The paper focuses on applications to aerial robotics vehicles, however, the ideas apply directly to other force actuated vehicles such as submersibles or space vehicles, and the authors believe the approach has potential for control of terrestrial vehicles and even teleoperation of manipulators. Experimental results are provided for a simulated aerial robot in a virtual environment controlled by a haptic joystick.
Resumo:
The Dynamic Data eXchange (DDX) is our third generation platform for building distributed robot controllers. DDX allows a coalition of programs to share data at run-time through an efficient shared memory mechanism managed by a store. Further, stores on multiple machines can be linked by means of a global catalog and data is moved between the stores on an as needed basis by multi-casting. Heterogeneous computer systems are handled. We describe the architecture of DDX and the standard clients we have developed that let us rapidly build complex control systems with minimal coding.
Resumo:
The paper proposes a solution for testing of a physical distributed generation system (DGs) along with a computer simulated network. The computer simulated network is referred as the virtual grid in this paper. Integration of DG with the virtual grid provides broad area of testing of power supplying capability and dynamic performance of a DG. It is shown that a DG can supply a part of load power while keeping Point of Common Coupling (PCC) voltage magnitude constant. To represent the actual load, a universal load along with power regenerative capability is designed with the help of voltage source converter (VSC) that mimics the load characteristic. The overall performance of the proposed scheme is verified using computer simulation studies.
Resumo:
This paper investigates the possibility of power sharing improvements amongst distributed generators with low cost, low bandwidth communications. Decentralized power sharing or power management can be improved significantly with low bandwidth communication. Utility intranet or a dedicated web based communication can serve the purpose. The effect of network parameter such line impedance, R/X ratio on decentralized power sharing can be compensated with correction in the decentralized control reference quantities through the low bandwidth communication. In this paper, the possible improvement is demonstrated in weak system condition, where the micro sources and the loads are not symmetrical along the rural microgrid with high R/X ratio line, creates challenge for decentralized control. In those cases the web based low bandwidth communication is economic and justified than costly advance high bandwidth communication.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis.
Resumo:
Islanded operation, protection, reclosing and arc extinguishing are some of the challenging issues related to the connection of converter interfaced distributed generators (DGs) into a distribution network. The isolation of upstream faults in grid connected mode and fault detection in islanded mode using overcurrent devices are difficult. In the event of an arc fault, all DGs must be disconnected in order to extinguish the arc. Otherwise, they will continue to feed the fault, thus sustaining the arc. However, the system reliability can be increased by maximising the DG connectivity to the system: therefore, the system protection scheme must ensure that only the faulted segment is removed from the feeder. This is true even in the case of a radial feeder as the DG can be connected at various points along the feeder. In this paper, a new relay scheme is proposed which, along with a novel current control strategy for converter interfaced DGs, can isolate permanent and temporary arc faults. The proposed protection and control scheme can even coordinate with reclosers. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.
Resumo:
Various load compensation schemes proposed in literature assume that voltage source at point of common coupling (PCC) is stiff. In practice, however, the load is remote from a distribution substation and is supplied by a feeder. In the presence of feeder impedance, the PWM inverter switchings distort both the PCC voltage and the source currents. In this paper load compensation with such a non-stiff source is considered. A switching control of the voltage source inverter (VSI) based on state feedback is used for load compensation with non-stiff source. The design of the state feedback controller requires careful considerations in choosing a gain matrix and in the generation of reference quantities. These aspects are considered in this paper. Detailed simulation and experimental results are given to support the control design.