898 resultados para COLLABORATIVE AND PARALLEL FUZZY CLUSTERING
Resumo:
This work aims to discuss and analyze the process of school inclusion of a blind person in the Bachelor's Degree in Music, at the School of Music at the Federal University of Rio Grande do Norte, as well as reflect on the importance of establishing systems of support and to ensure university inclusive process of people with visual impairments. In pursuit to achieve these objectives, this research chose a qualitative methodological approach, the case study, using as procedures for data construction an interview, observation, analysis of documents and photographs. Joined the group of participants in this study, a blind student in the class of 2009.1of the EMUFRN Bachelor's Degree in Music, teachers from two disciplines complied by the student, two classmates, a monitor support in music theory, the course coordinator and school principal, and two other individuals who contributed to the inclusion process in actions not formalized institutionally. The results indicate UFRN proposed initiatives that contribute to inclusion of students with disabilities in this institution, the main one is the creation of the Standing Committee of Support for Students with Special Educational Needs (CAENE), a group that guides administrative sectors, teachers, principals, coordinators and students on the measures needed to enter and remain in quality education for all. Physical accessibility is still under construction at UFRN, and many access and sectors see it being adapted for students with physical or visual disabilities, and those with mobility impairments, have access to various parts of the university, however, as shown in this study, some points need to be reconsidered, as there are several places where the installation of tactile floor does not fully follow the guidelines proposed in the legislation. The proposals for access to the curriculum, mediated by EMUFRN, are actions that propose the inclusion of the blind student, as the existence of an educational monitor to help in the study of music theory, however, we need to rethink these proposals to not became actions of reactive intervention. Assuming a more proactive posture, the EMUFRN will be prepared to receive the diversity of students that expects. The study also points out that the blind student is part of a group of students that are practical musicians, who must work in events and evening shows, and who have little knowledge in music theory, leading, respectively, in low frequency classes and learning difficulties in certain curricular components, which may cause the closing of such components. In this case, the challenge of EMUFRN, considering the inclusive perspective, it is not specifically fit for the academic host a blind student, but to develop an accessibility project curriculum to consider effectively the diversity of all its students, taking into account mainly the economic and cultural conditions. This implies a process of resizing academic practices that be guided for collaborative and coordinated actions involving the various educational actors at EMUFRN and UFRN
Resumo:
ln this work, it was deveIoped a parallel cooperative genetic algorithm with different evolution behaviors to train and to define architectures for MuItiIayer Perceptron neural networks. MuItiIayer Perceptron neural networks are very powerful tools and had their use extended vastIy due to their abiIity of providing great resuIts to a broad range of appIications. The combination of genetic algorithms and parallel processing can be very powerful when applied to the Iearning process of the neural network, as well as to the definition of its architecture since this procedure can be very slow, usually requiring a lot of computational time. AIso, research work combining and appIying evolutionary computation into the design of neural networks is very useful since most of the Iearning algorithms deveIoped to train neural networks only adjust their synaptic weights, not considering the design of the networks architecture. Furthermore, the use of cooperation in the genetic algorithm allows the interaction of different populations, avoiding local minima and helping in the search of a promising solution, acceIerating the evolutionary process. Finally, individuaIs and evolution behavior can be exclusive on each copy of the genetic algorithm running in each task enhancing the diversity of populations
Resumo:
Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing. In this sense, this paper proposes a modular structure that proved to be more suitable for parallel implementations. It is proposed to parallelize the feedforward process of an RNA-type MLP, implemented with OpenMP on a shared memory computer architecture. The research consistes on testing and analizing execution times. Speedup, efficiency and parallel scalability are analyzed. In the proposed approach, by reducing the number of connections between remote neurons, the response time of the network decreases and, consequently, so does the total execution time. The time required for communication and synchronization is directly linked to the number of remote neurons in the network, and so it is necessary to investigate which one is the best distribution of remote connections
Resumo:
This paper analyzes the performance of a parallel implementation of Coupled Simulated Annealing (CSA) for the unconstrained optimization of continuous variables problems. Parallel processing is an efficient form of information processing with emphasis on exploration of simultaneous events in the execution of software. It arises primarily due to high computational performance demands, and the difficulty in increasing the speed of a single processing core. Despite multicore processors being easily found nowadays, several algorithms are not yet suitable for running on parallel architectures. The algorithm is characterized by a group of Simulated Annealing (SA) optimizers working together on refining the solution. Each SA optimizer runs on a single thread executed by different processors. In the analysis of parallel performance and scalability, these metrics were investigated: the execution time; the speedup of the algorithm with respect to increasing the number of processors; and the efficient use of processing elements with respect to the increasing size of the treated problem. Furthermore, the quality of the final solution was verified. For the study, this paper proposes a parallel version of CSA and its equivalent serial version. Both algorithms were analysed on 14 benchmark functions. For each of these functions, the CSA is evaluated using 2-24 optimizers. The results obtained are shown and discussed observing the analysis of the metrics. The conclusions of the paper characterize the CSA as a good parallel algorithm, both in the quality of the solutions and the parallel scalability and parallel efficiency
Resumo:
The increasing demand for high performance wireless communication systems has shown the inefficiency of the current model of fixed allocation of the radio spectrum. In this context, cognitive radio appears as a more efficient alternative, by providing opportunistic spectrum access, with the maximum bandwidth possible. To ensure these requirements, it is necessary that the transmitter identify opportunities for transmission and the receiver recognizes the parameters defined for the communication signal. The techniques that use cyclostationary analysis can be applied to problems in either spectrum sensing and modulation classification, even in low signal-to-noise ratio (SNR) environments. However, despite the robustness, one of the main disadvantages of cyclostationarity is the high computational cost for calculating its functions. This work proposes efficient architectures for obtaining cyclostationary features to be employed in either spectrum sensing and automatic modulation classification (AMC). In the context of spectrum sensing, a parallelized algorithm for extracting cyclostationary features of communication signals is presented. The performance of this features extractor parallelization is evaluated by speedup and parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several configuration of false alarm probability, SNR levels and observation time for BPSK and QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature is validated by a modulation classification architecture based on pattern matching. The architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK, MSK and FSK modulations, considering several scenarios of observation length and SNR levels. The numerical results of performance obtained in this work show the eficiency of the proposed architectures
Resumo:
Fillers are often added in composites to enhance performance and/or to reduce cost. Fiberglass pipes must meet performance requirements and industrial sand is frequently added for the pipe to be cost competitive. The sand is added to increase pipe wall thickness, thus increase pipe stiffness. The main goal of the present work is to conduct an experimental investigation between pipes fabricated with and without de addition of sand, to be used in the petroleum industry. Pipes were built using E-glass fibers, polyester resin and siliceous sand. The fabrication process used hand lay up and filament winding and was divided in two different parts: the liner and the structural wall. All tested pipes had the same liner, but different structural wall composition, which is the layer where siliceous sand may be added or not. The comparative investigation was developed considering the results of longitudinal tensile tests, hoop tensile tests, hydrostatic pressure leak tests and parallel-plate loading stiffness tests. SEM was used to analyze if the sand caused any damage to the glass fibers, during the fabrication process, because of the fiber-sand contact. The procedure was also used to verify the composite conditions after the hydrostatic pressure leak test. The results proved that the addition of siliceous sand reduced the leak pressure in about 17 %. In the other hand, this loss in pressure was compensated by a stiffness increment of more than 380 %. MEV analyses show that it is possible to find damage on the fiber-sand contact, but on a very small amount. On most cases, the contact occurs without damage evidences. In summary, the addition of sand filler represented a 27.8 % of cost reduction, when compared to a pipe designed with glass fiber and resin only. This cost reduction combined to the good mechanical tests results make siliceous sand filler suitable for fiberglass pressure pipes
Resumo:
VoiceThread (VT) is a collaborative and asynchronous web 2.0 tool, which permits the creation of oral presentations with the help of images, documents, texts and voice, allowing groups of people to browse and contribute with comments using several options: voice (microphone or cell phone), text and audio-file or video (webcam) (BOTTENTUIT JUNIOR, LISBÔA E COUTINHO, 2009). The hybrid experience with VoiceThread allows learners to plan their speech before recording it, without the pressure often existent in the classroom. Furthermore, the presentations can be recorded several times, enabling students to listen to them, notice the gaps in their oral production (noticing) and edit innumerous times before publishing them online. In this perspective, oral production is seen as a process of L2 acquisition, not only as practice of already existent knowledge, because it can stimulate the learner to process the language syntactically (SWAIN, 1985; 1995). In this context, this study aims to verify if there is a relation between the oral production of the learners more specifically the grammatical accuracy and the global oral grade and their noticing capacity, how the systematic practice with VoiceThread, in a hybrid approach, can impact the learners global oral development, their oral production in terms of fluency (number of words per minute), accuracy (number of errors in hundred words), and complexity (number of dependent clauses per minute), and on their noticing capacity (SCHMIDT, 1990; 1995; 2001), that is, the learner s capacity of noticing the gaps existent in their oral production. In order to answer these research questions, 49 L2 learners of English were divided into an experimental group (25 students) and a control group (24 students). The experimental group was exposed to the hybrid approach with VT during two months and, through a pre- and post-test, we verified if this systematic practice would positively influence these participants oral production and noticing capacity. These results were compared to the pre- and post-test scores from the control group, which was not exposed to VT. Finally, learners impressions in relation to the use of this tool were also sought through a questionnaire applied after the post-test. The results indicate that there is a statistically significant correlation between the learners speech production (accuracy and global oral grade) and their noticing capacity. Besides, it was verified a positive impact of VoiceThread on the learners speech production variables and on their noticing capacity. They also reveal a positive reaction by the learners in relation to the hybrid experience with this web tool
Resumo:
We study the critical behavior of the one-dimensional pair contact process (PCP), using the Monte Carlo method for several lattice sizes and three different updating: random, sequential and parallel. We also added a small modification to the model, called Monte Carlo com Ressucitamento" (MCR), which consists of resuscitating one particle when the order parameter goes to zero. This was done because it is difficult to accurately determine the critical point of the model, since the order parameter(particle pair density) rapidly goes to zero using the traditional approach. With the MCR, the order parameter becomes null in a softer way, allowing us to use finite-size scaling to determine the critical point and the critical exponents β, ν and z. Our results are consistent with the ones already found in literature for this model, showing that not only the process of resuscitating one particle does not change the critical behavior of the system, it also makes it easier to determine the critical point and critical exponents of the model. This extension to the Monte Carlo method has already been used in other contact process models, leading us to believe its usefulness to study several others non-equilibrium models
Resumo:
Este trabalho apresenta uma investigação sobre o emprego de FMEA (Failure Mode and Effect Analysis) de Processo com a exposição de irregularidades na sua utilização. O método AHP (Analytic Hierarchy Process) e os Conjuntos Fuzzy são aplicados no estudo das práticas atuais de utilização de FMEA. O AHP é aplicado para a priorização das irregularidades quanto à gravidade de sua ocorrência. Os Conjuntos Fuzzy são aplicados para avaliação do desempenho da utilização de FMEA em algumas empresas do ramo automotivo. Como resultado, tem-se a aceitação de oito e a não aceitação de três dos onze formulários de FMEA averiguados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It bet on the next generation of computers as architecture with multiple processors and/or multicore processors. In this sense there are challenges related to features interconnection, operating frequency, the area on chip, power dissipation, performance and programmability. The mechanism of interconnection and communication it was considered ideal for this type of architecture are the networks-on-chip, due its scalability, reusability and intrinsic parallelism. The networks-on-chip communication is accomplished by transmitting packets that carry data and instructions that represent requests and responses between the processing elements interconnected by the network. The transmission of packets is accomplished as in a pipeline between the routers in the network, from source to destination of the communication, even allowing simultaneous communications between pairs of different sources and destinations. From this fact, it is proposed to transform the entire infrastructure communication of network-on-chip, using the routing mechanisms, arbitration and storage, in a parallel processing system for high performance. In this proposal, the packages are formed by instructions and data that represent the applications, which are executed on routers as well as they are transmitted, using the pipeline and parallel communication transmissions. In contrast, traditional processors are not used, but only single cores that control the access to memory. An implementation of this idea is called IPNoSys (Integrated Processing NoC System), which has an own programming model and a routing algorithm that guarantees the execution of all instructions in the packets, preventing situations of deadlock, livelock and starvation. This architecture provides mechanisms for input and output, interruption and operating system support. As proof of concept was developed a programming environment and a simulator for this architecture in SystemC, which allows configuration of various parameters and to obtain several results to evaluate it
Resumo:
Peng was the first to work with the Technical DFA (Detrended Fluctuation Analysis), a tool capable of detecting auto-long-range correlation in time series with non-stationary. In this study, the technique of DFA is used to obtain the Hurst exponent (H) profile of the electric neutron porosity of the 52 oil wells in Namorado Field, located in the Campos Basin -Brazil. The purpose is to know if the Hurst exponent can be used to characterize spatial distribution of wells. Thus, we verify that the wells that have close values of H are spatially close together. In this work we used the method of hierarchical clustering and non-hierarchical clustering method (the k-mean method). Then compare the two methods to see which of the two provides the best result. From this, was the parameter � (index neighborhood) which checks whether a data set generated by the k- average method, or at random, so in fact spatial patterns. High values of � indicate that the data are aggregated, while low values of � indicate that the data are scattered (no spatial correlation). Using the Monte Carlo method showed that combined data show a random distribution of � below the empirical value. So the empirical evidence of H obtained from 52 wells are grouped geographically. By passing the data of standard curves with the results obtained by the k-mean, confirming that it is effective to correlate well in spatial distribution
Resumo:
In this work we elaborate and discuss a Complex Network model which presents connectivity scale free probability distribution (power-law degree distribution). In order to do that, we modify the rule of the preferential attachment of the Bianconi-Barabasi model, including a factor which represents the similarity of the sites. The term that corresponds to this similarity is called the affinity, and is obtained by the modulus of the difference between the fitness (or quality) of the sites. This variation in the preferential attachment generates very interesting results, by instance the time evolution of the connectivity, which follows a power-law distribution ki / ( t t0 )fi, where fi indicates the rate to the site gain connections. Certainly this depends on the affinity with other sites. Besides, we will show by numerical simulations results for the average path length and for the clustering coefficient
Resumo:
Baixo Vermelho area, situated on the northern portion of Umbuzeiro Graben (onshore Potiguar Basin), represents a typical example of a rift basin, characterized, in subsurface, by the sedimentary rift sequence, correlated to Pendência Formation (Valanginian-Barremian), and by the Carnaubais fault system. In this context, two main goals, the stratigraphic and the structural analysis, had guided the research. For this purpose, it was used the 3D seismic volume and eight wells located in the study area and adjacencies. The stratigraphic analysis of the Valanginian-Barremian interval was carried through in two distinct phases, 1D and 2D, in which the basic concepts of the sequence stratigraphy had been adapted. In these phases, the individual analysis of each well and the correlation between them, allowed to recognize the main lithofacies, to interpret the effective depositional systems and to identify the genetic units and key-surfaces of chronostratigraphic character. The analyzed lithofacies are represented predominantly by conglomerates, sandstones, siltites and shales, with carbonate rocks and marls occurring subordinately. According to these lithofacies associations, it is possible to interpret the following depositional systems: alluvial fan, fluvio-deltaic and lacustrine depositional systems. The alluvial fan system is mainly composed by conglomerates deposits, which had developed, preferentially in the south portion of the area, being directly associated to Carnaubais fault system. The fluvial-deltaic system, in turn, was mainly developed in the northwest portion of the area, at the flexural edge, being characterized by coarse sandstones with shales and siltites intercalated. On the other hand, the lacustrine system, the most dominant one in the study area, is formed mainly by shales that could occur intercalated with thin layers of fine to very fine sandstones, interpreted as turbidite deposits. The recognized sequence stratigraphy units in the wells are represented by parasequence sets, systems tracts and depositional sequences. The parasequence sets, which are progradational or retrogradational, had been grouped and related to the systems tracts. The predominance of the progradation parasequence sets (general trend with coarsening-upward) characterizes the Regressive Systems Tract, while the occurrence, more frequently, of the retrogradation parasequence sets (general trend with finning-upward) represents the Transgressive System Tract. In the seismic stratigraphic analysis, the lithofacies described in the wells had been related to chaotic, progradational and parallel/subparallel seismic facies, which are associated, frequently, to the alluvial fans, fluvial-deltaic and lacustrine depositional systems, respectively. In this analysis, it was possible to recognize fifteen seismic horizons that correspond to sequence boundaries and to maximum flooding surfaces, which separates Transgressive to Regressive systems tracts. The recognition of transgressive-regressive cycles allowed to identify nine, possibly, 3a order deposicional sequences, related to the tectonic-sedimentary cycles. The structural analysis, in turn, was done at Baixo Vermelho seismic volume, which shows, clearly, the structural complexity printed in the area, mainly related to Carnaubais fault system, acting as an important fault system of the rift edge. This fault system is characterized by a main arrangement of normal faults with trend NE-SO, where Carnaubais Fault represents the maximum expression of these lineations. Carnaubais Fault corresponds to a fault with typically listric geometry, with general trend N70°E, dipping to northwest. It is observed, throughout all the seismic volume, with variations in its surface, which had conditioned, in its evolutive stages, the formation of innumerable structural features that normally are identified in Pendencia Formation. In this unit, part of these features is related to the formation of longitudinal foldings (rollover structures and distentional folding associated), originated by the displacement of the main fault plan, propitiating variations in geometry and thickness of the adjacent layers, which had been deposited at the same time. Other structural features are related to the secondary faultings, which could be synthetic or antithetic to Carnaubais Fault. In a general way, these faults have limited lateral continuity, with listric planar format and, apparently, they play the role of the accomodation of the distentional deformation printed in the area. Thus, the interaction between the stratigraphic and structural analysis, based on an excellent quality of the used data, allowed to get one better agreement on the tectonicsedimentary evolution of the Valanginian-Barremian interval (Pendência Formation) in the studied area
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)