975 resultados para AMINO ACID SEQUENCE
Resumo:
Motivation: Conformational flexibility is essential to the function of many proteins, e.g. catalytic activity. To assist efforts in determining and exploring the functional properties of a protein, it is desirable to automatically identify regions that are prone to undergo conformational changes. It was recently shown that a probabilistic predictor of continuum secondary structure is more accurate than categorical predictors for structurally ambivalent sequence regions, suggesting that such models are suited to characterize protein flexibility. Results: We develop a computational method for identifying regions that are prone to conformational change directly from the amino acid sequence. The method uses the entropy of the probabilistic output of an 8-class continuum secondary structure predictor. Results for 171 unique amino acid sequences with well-characterized variable structure (identified in the 'Macromolecular movements database') indicate that the method is highly sensitive at identifying flexible protein regions, but false positives remain a problem. The method can be used to explore conformational flexibility of proteins (including hypothetical or synthetic ones) whose structure is yet to be determined experimentally.
Resumo:
The presence Of D-amino-acid-containing polypeptides, defensin-like peptide (DLP)-2 and Ornithorhyncus venom C-type natriuretic peptide (OvCNP)b, in platypus venom suggested the existence of a mammalian D-amino-acid-residue isomerase(s) responsible for the modification of the all-L-amino acid precursors. We show here that this enzyme(s) is present in the venom gland extract and is responsible for the creation of DLP-2 from DLP-4 and OvCNPb from OvCNPa. The isomerisation reaction is freely reversible and under well defined laboratory conditions catalyses the interconversion of the DLPs to full equilibration. The isomerase is similar to 50-60 kDa and is inhibited by methanol and the peptidase inhibitor amastatin. This is the first known L-to-D-amino-acid-residue isomerase in a mammal. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.
Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry: A review.
Resumo:
Prediction of peroxisomal matrix proteins generally depends on the presence of one of two distinct motifs at the end of the amino acid sequence. PTS1 peroxisomal proteins have a well conserved tripeptide at the C-terminal end. However, the preceding residues in the sequence arguably play a crucial role in targeting the protein to the peroxisome. Previous work in applying machine learning to the prediction of peroxisomal matrix proteins has failed W capitalize on the full extent of these dependencies. We benchmark a range of machine learning algorithms, and show that a classifier - based on the Support Vector Machine - produces more accurate results when dependencies between the conserved motif and the preceding section are exploited. We publish an updated and rigorously curated data set that results in increased prediction accuracy of most tested models.