924 resultados para probabilistic Hough transform
Resumo:
A new methodology is proposed for the analysis of generation capacity investment in a deregulated market environment. This methodology proposes to make the investment appraisal using a probabilistic framework. The probabilistic production simulation (PPC) algorithm is used to compute the expected energy generated, taking into account system load variations and plant forced outage rates, while the Monte Carlo approach has been applied to model the electricity price variability seen in a realistic network. The model is able to capture the price and hence the profitability uncertainties for generator companies. Seasonal variation in the electricity prices and the system demand are independently modeled. The method is validated on IEEE RTS system, augmented with realistic market and plant data, by using it to compare the financial viability of several generator investments applying either conventional or directly connected generator (powerformer) technologies. The significance of the results is assessed using several financial risk measures.
Resumo:
This paper presents a method to analyze the first order eigenvalue sensitivity with respect to the operating parameters of a power system. The method is based on explicitly expressing the system state matrix into sub-matrices. The eigenvalue sensitivity is calculated based on the explicitly formed system state matrix. The 4th order generator model and 4th order exciter system model are used to form the system state matrix. A case study using New England 10-machine 39-bus system is provided to demonstrate the effectiveness of the proposed method. This method can be applied into large scale power system eigenvalue sensitivity with respect to operating parameters.
Resumo:
Grid computing is an advanced technique for collaboratively solving complicated scientific problems using geographically and organisational dispersed computational, data storage and other recourses. Application of grid computing could provide significant benefits to all aspects of power system that involves using computers. Based on our previous research, this paper presents a novel grid computing approach for probabilistic small signal stability (PSSS) analysis in electric power systems with uncertainties. A prototype computing grid is successfully implemented in our research lab to carry out PSSS analysis on two benchmark systems. Comparing to traditional computing techniques, the gird computing has given better performances for PSSS analysis in terms of computing capacity, speed, accuracy and stability. In addition, a computing grid framework for power system analysis has been proposed based on the recent study.
Resumo:
Probabilistic robotics most often applied to the problem of simultaneous localisation and mapping (SLAM), requires measures of uncertainty to accompany observations of the environment. This paper describes how uncertainty can be characterised for a vision system that locates coloured landmarks in a typical laboratory environment. The paper describes a model of the uncertainty in segmentation, the internal cameral model and the mounting of the camera on the robot. It explains the implementation of the system on a laboratory robot, and provides experimental results that show the coherence of the uncertainty model.
Resumo:
This paper presents a forecasting technique for forward energy prices, one day ahead. This technique combines a wavelet transform and forecasting models such as multi- layer perceptron, linear regression or GARCH. These techniques are applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the wavelet transform. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.
Resumo:
Principal component analysis (PCA) is one of the most popular techniques for processing, compressing and visualising data, although its effectiveness is limited by its global linearity. While nonlinear variants of PCA have been proposed, an alternative paradigm is to capture data complexity by a combination of local linear PCA projections. However, conventional PCA does not correspond to a probability density, and so there is no unique way to combine PCA models. Previous attempts to formulate mixture models for PCA have therefore to some extent been ad hoc. In this paper, PCA is formulated within a maximum-likelihood framework, based on a specific form of Gaussian latent variable model. This leads to a well-defined mixture model for probabilistic principal component analysers, whose parameters can be determined using an EM algorithm. We discuss the advantages of this model in the context of clustering, density modelling and local dimensionality reduction, and we demonstrate its application to image compression and handwritten digit recognition.
Resumo:
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss the advantages conveyed by the definition of a probability density function for PCA.
Resumo:
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss the advantages conveyed by the definition of a probability density function for PCA.
Resumo:
This thesis provides an interoperable language for quantifying uncertainty using probability theory. A general introduction to interoperability and uncertainty is given, with particular emphasis on the geospatial domain. Existing interoperable standards used within the geospatial sciences are reviewed, including Geography Markup Language (GML), Observations and Measurements (O&M) and the Web Processing Service (WPS) specifications. The importance of uncertainty in geospatial data is identified and probability theory is examined as a mechanism for quantifying these uncertainties. The Uncertainty Markup Language (UncertML) is presented as a solution to the lack of an interoperable standard for quantifying uncertainty. UncertML is capable of describing uncertainty using statistics, probability distributions or a series of realisations. The capabilities of UncertML are demonstrated through a series of XML examples. This thesis then provides a series of example use cases where UncertML is integrated with existing standards in a variety of applications. The Sensor Observation Service - a service for querying and retrieving sensor-observed data - is extended to provide a standardised method for quantifying the inherent uncertainties in sensor observations. The INTAMAP project demonstrates how UncertML can be used to aid uncertainty propagation using a WPS by allowing UncertML as input and output data. The flexibility of UncertML is demonstrated with an extension to the GML geometry schemas to allow positional uncertainty to be quantified. Further applications and developments of UncertML are discussed.
Resumo:
Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions.