Probabilistic principal component analysis
Data(s) |
04/09/1997
|
---|---|
Resumo |
Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss the advantages conveyed by the definition of a probability density function for PCA. |
Formato |
application/pdf |
Identificador |
http://eprints.aston.ac.uk/7361/1/NCRG_97_010.pdf Tipping, Michael E. and Bishop, Christopher M. (1997). Probabilistic principal component analysis. Technical Report. Aston University, Birmingham. |
Publicador |
Aston University |
Relação |
http://eprints.aston.ac.uk/7361/ |
Tipo |
Monograph NonPeerReviewed |