744 resultados para patent classification
Resumo:
ABSTRACT Geographic Information System (GIS) is an indispensable software tool in forest planning. In forestry transportation, GIS can manage the data on the road network and solve some problems in transportation, such as route planning. Therefore, the aim of this study was to determine the pattern of the road network and define transport routes using GIS technology. The present research was conducted in a forestry company in the state of Minas Gerais, Brazil. The criteria used to classify the pattern of forest roads were horizontal and vertical geometry, and pavement type. In order to determine transport routes, a data Analysis Model Network was created in ArcGIS using an Extension Network Analyst, allowing finding a route shorter in distance and faster. The results showed a predominance of horizontal geometry classes average (3) and bad (4), indicating presence of winding roads. In the case of vertical geometry criterion, the class of highly mountainous relief (4) possessed the greatest extent of roads. Regarding the type of pavement, the occurrence of secondary coating was higher (75%), followed by primary coating (20%) and asphalt pavement (5%). The best route was the one that allowed the transport vehicle travel in a higher specific speed as a function of road pattern found in the study.
Resumo:
This study aimed to propose methods to identify croplands cultivated with winter cereals in the northern region of Rio Grande do Sul State, Brazil. Thus, temporal profiles of Normalized Difference Vegetation Index (NDVI) from MODIS sensor, from April to December of the 2000 to 2008, were analyzed. Firstly, crop masks were elaborated by subtracting the minimum NDVI image (April to May) from the maximum NDVI image (June to October). Then, an unsupervised classification of NDVI images was carried out (Isodata), considering the crop mask areas. According to the results, crop masks allowed the identification of pixels with greatest green biomass variation. This variation might be associated or not with winter cereals areas established to grain production. The unsupervised classification generated classes in which NDVI temporal profiles were associated with water bodies, pastures, winter cereals for grain production and for soil cover. Temporal NDVI profiles of the class winter cereals for grain production were in agree with crop patterns in the region (developmental stage, management standard and sowing dates). Therefore, unsupervised classification based on crop masks allows distinguishing and monitoring winter cereal crops, which were similar in terms of morphology and phenology.
Resumo:
This study compares the precision of three image classification methods, two of remote sensing and one of geostatistics applied to areas cultivated with citrus. The 5,296.52ha area of study is located in the city of Araraquara - central region of the state of São Paulo (SP), Brazil. The multispectral image from the CCD/CBERS-2B satellite was acquired in 2009 and processed through the Geographic Information System (GIS) SPRING. Three classification methods were used, one unsupervised (Cluster), and two supervised (Indicator Kriging/IK and Maximum Likelihood/Maxver), in addition to the screen classification taken as field checking.. Reliability of classifications was evaluated by Kappa index. In accordance with the Kappa index, the Indicator kriging method obtained the highest degree of reliability for bands 2 and 4. Moreover the Cluster method applied to band 2 (green) was the best quality classification between all the methods. Indicator Kriging was the classifier that presented the citrus total area closest to the field check estimated by -3.01%, whereas Maxver overestimated the total citrus area by 42.94%.
Resumo:
Työssä tutkitaan neljän matkapuhelinvalmistajan teknologista keskittymistä patenttianalyysin avulla. Tavoitteena on tutkia, onko yritysten patentoinnissa eroja sekä mihin eri teknologian osa-alueisiin yritykset patentoivat ja mihin eivät. Tavoitteen taustalla on selvittää, voidaanko patenttiaineistosta saada viitteitä yrityksen ydinosaamisesta. Työ koostuu kolmesta rakenteellisesta osiosta. Teoria esittelee patentit ja patenttiviittaukset. Patenttiaineisto on kerätty Lappeenrannan teknillisen yliopiston patenttipalvelimelta ja sitä on analysoitu tietokanta- sekä tilastollisen käsittelyn ohjelmalla. Tuloksista tehdyt analyysit yhdistetään teoriaan, jonka pohjalta tehdään johtopäätöksiä sekä suoritetaan vertailua yritysten kesken liittyen tutkimuskysymyksiin. Lopuksi arvioidaan aineiston ja tulosten luotettavuutta sekä esitetään mahdollisia jatkotutkimusaiheita.
Resumo:
OBJECTIVE: to evaluate Crohn's disease recurrence and its possible predictors in patients undergoing surgical treatment. METHODS: We conducted a retrospective study with Crohn's disease (CD) patients undergoing surgical treatment between January 1992 and January 2012, and regularly monitored at the Bowel Clinic of the Hospital das Clínicas of the UFMG. RESULTS: we evaluated 125 patients, 50.4% female, with a mean age of 46.12 years, the majority (63.2%) diagnosed between 17 and 40 years of age. The ileum was involved in 58.4%, whereas stenotic behavior was observed in 44.8%, and penetrating, in 45.6%. We observed perianal disease in 26.4% of cases. The follow-up average was 152.40 months. Surgical relapse occurred in 29.6%, with a median time of 68 months from the first operation. CONCLUSION: The ileocolic location, penetrating behavior and perianal involvement (L3B3p) were associated with increased risk of surgical recurrence.
Resumo:
kuv., 10 x 13 cm
Resumo:
Gestational trophoblastic neoplasia (GTN) is the term to describe a set of malignant placental diseases, including invasive mole, choriocarcinoma, placental site trophoblastic tumor and epithelioid trophoblastic tumor. Both invasive mole and choriocarcinoma respond well to chemotherapy, and cure rates are greater than 90%. Since the advent of chemotherapy, low-risk GTN has been treated with a single agent, usually methotrexate or actinomycin D. Cases of high-risk GTN, however, should be treated with multiagent chemotherapy, and the regimen usually selected is EMA-CO, which combines etoposide, methotrexate, actinomycin D, cyclophosphamide and vincristine. This study reviews the literature about GTN to discuss current knowledge about its diagnosis and treatment.
Resumo:
This thesis presents different IPR risk mitigation actions as well as enforcement practices and evaluates their usability in different situations. The focus is on pending patent applications, where the right is not officially recognized or established yet, but some references are made to granted patents as well. The thesis presents the different aspects when assessing the risk level created by patents and pending applications. At all times it compares the patent law of the United States and European Patent Convention. Occasionally some references are made to national law, when the European Patent Convention cannot be applied. The thesis presents two case examples, which bring the risk mitigation actions and enforcement practices closer to practice.
Resumo:
The purpose of the thesis is to classify suppliers and to enhance strategic purchasing in the case company. Supplier classification is conducted to fulfill the requirements of the company quality manual and international quality standards. To gain more benefit, a strategic purchasing tool, Kraljic’s purchasing portfolio and analytical hierarchy process are utilized for the base of supplier classification. Purchasing portfolio is used to give quick and easy visual insight on product group management form the viewpoint of purchasing. From the base on purchasing portfolio alternative purchasing and supplier strategies can be formed that enhance the strategic orientation of purchasing. Thus purchasing portfolio forces the company to orient on proactive and strategic purchasing. As a result a survey method for implementing purchasing portfolio in the company is developed that exploits analytical hierarchy process. Experts from the company appoint the categorization criteria and in addition, participate in the survey to categorize product groups on the portfolio. Alternative purchasing strategies are formed. Suppliers are classified depending on the importance and characteristics of the product groups supplied.
Resumo:
Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.
Resumo:
Työssä käydään läpi tukivektorikoneiden teoreettista pohjaa sekä tutkitaan eri parametrien vaikutusta spektridatan luokitteluun.
Resumo:
This thesis studies the development of service offering model that creates added-value for customers in the field of logistics services. The study focusses on offering classification and structures of model. The purpose of model is to provide value-added solutions for customers and enable superior service experience. The aim of thesis is to define what customers expect from logistics solution provider and what value customers appreciate so greatly that they could invest in value-added services. Value propositions, costs structures of offerings and appropriate pricing methods are studied. First, literature review of creating solution business model and customer value is conducted. Customer value is found out with customer interviews and qualitative empiric data is used. To exploit expertise knowledge of logistics, innovation workshop tool is utilized. Customers and experts are involved in the design process of model. As a result of thesis, three-level value-added service offering model is created based on empiric and theoretical data. Offerings with value propositions are proposed and the level of model reflects the deepness of customer-provider relationship and the amount of added value. Performance efficiency improvements and cost savings create the most added value for customers. Value-based pricing methods, such as performance-based models are suggested to apply. Results indicate the interest of benefitting networks and partnership in field of logistics services. Networks development is proposed to be investigated further.
Resumo:
The predominant type of liver alteration in asymptomatic or oligosymptomatic chronic male alcoholics (N = 169) admitted to a psychiatric hospital for detoxification was classified by two independent methods: liver palpation and multiple quadratic discriminant analysis (QDA), the latter applied to two parameters reported by the patient (duration of alcoholism and daily amount ingested) and to the data obtained from eight biochemical blood determinations (total bilirubin, alkaline phosphatase, glycemia, potassium, aspartate aminotransferase, albumin, globulin, and sodium). All 11 soft and sensitive, and 13 firm and sensitive livers formed fully concordant groups as determined by QDA. Among the 22 soft and not sensitive livers, 95% were concordant by QDA grouping. Concordance rates were low (55%) in the 73 firm and not sensitive livers, and intermediate (76%) in the 50 not palpable livers. Prediction of the liver palpation characteristics by QDA was 95% correct for the firm and not sensitive livers and moderate for the other groups. On a preliminary basis, the variables considered to be most informative by QDA were the two anamnestic data and bilirubin levels, followed by alkaline phosphatase, glycemia and potassium, and then by aspartate aminotransferase and albumin. We conclude that, when biopsies would be too costly or potentially injurious to the patients to varying extents, clinical data could be considered valid to guide patient care, at least in the three groups (soft, not sensitive; soft, sensitive; firm, sensitive livers) in which the two noninvasive procedures were highly concordant in the present study.
Resumo:
The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.