913 resultados para grain stored pest
Resumo:
Damage caused by the ant Azteca barbifex (Forel) was identified in orange trees (Citrus sinensis), in Capitão Poço County, Guamá microregion, Pará State. The damage caused by the scraping of stems and branches lead to reduction in yield with subsequent death of the plant. These characteristics indicate A. barbifex as a potential pest of citrus crops in the eastern region of Amazon.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Structural heterogeneities in SnO2.CoO-based varistors were analyzed by transmission electron microscopy. In SnO2.CoO-based system doped with La2O3 and Pr2O3 two kinds of precipitate phases at grain boundary region were found. Using energy dispersive spectrometry they were found to be Co2SnO4 and Pr2Sn2O7, presenting a defined crystalline structure. It was also identified that such precipitate phases are mainly located in triple-junctions of the microstructure. HRTEM analysis revealed the existence of other two types of junctions, one as being homo-junctions of SnO2 grains and other due to twin grain boundaries inside the SnO2.CoO grain. The role of these types of junction in the overall nonlinear electrical features is also discussed. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The electrical properties of the grain boundary region of electroceramic sensor temperature based on inverse spinel Zn7Sb2O12 were investigated at high temperature. The zinc antimoniate was synthesized by a chemical route based on the modified Pechini method. The electric properties of Zn7Sb2O12 were investigated by impedance spectroscopy in the frequency range from 5 Hz to 13 MHz and from 250 up to 600 degreesC. The grain boundary conductivity follows the Arrhenius law, with two linear branches of different slopes. These branches exhibit activation energies with very similar values; the low-temperature (less than or equal to350 degreesC) and high-temperature (greater than or equal to400 degreesC) regions are equal to 1.15 and 1.16 eV, respectively. Dissimilar behavior is observed on the relaxation time (tau) curve as a function of temperature, where a single slope is identified. The negative temperature coefficient parameters and nature of the polarization phenomenon of the grain boundary are discussed. (C) 2003 American Institute of Physics.
Resumo:
In this article we investigate experimentally the potential of using pulsating flows for drying of food grains. A Rijke type oscillator with an electrical heater was used to dry batches of soybean grains. Drying temperatures were 60 degreesC. We observed a decrease on the drying time for pulsating flows when compared with the conventional non-pulsating regime. This decrease depended on sample initial moisture content and weight, and on final sample moisture content. (C) 2004 Elsevier B.V. Ltd.
Resumo:
The objective of this trial was to document the total fatty acids in Murrah buffaloes milk on commercial farms in Brazil. Data from forty lactating Murrah-crossbred buffaloes were collected on five commercial farms located at Sarapui and Pilar do Sul, São Paulo-Brazil. A field survey was done from April to November 2002. In four farms, buffaloes were fed with wet brewers grains (primary concentrate). Only one farm (Farm 4) offered pasture and corn silage. Monthly milk samples were collected and stored at -20 degrees C until analyzed for fatty acid composition. The fatty acids with the highest percentage in total milk fat were C(16:0); C(18:1c9); C(18:0) and C(14:0). The average content observed in C(16:0) varied from 25.4 to 32.5%. Farm 4 (pasture plus corn silage) showed a higher C(16:0) value (32.5%). C(18:1c9) (varied) from 20.6 to 25.1%, C(14:0) varied from 5.9 to 8.9% and CLA content (C(18:2c9t11)) varied from 1.0 to 1.8%. Farm 3 presented higher average of C(18:1c9) (25.1%) and C(18:2c9t11) (1.8%), and lower average of C(14:0) (6.0%). Likewise, unsaturated fatty acids, C(18:1c9) and C(18:2c9t11) were higher on Farm 3. Probably, these results can be due to high CIA intakes derived from wet brewers grain and pasture. Long chain fatty acids varied from 34.2% (Farm 4) to 48.8% (Farm 3). In general, diets based on pasture and corn silage increased the levels of medium chain fatty acids in Murrah buffaloes milk.
Resumo:
Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that C-T-1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.
Resumo:
The electric and dielectric properties of the grain boundary of Na0.85Li0.15NbO3 lead-free ferroelectric-semiconductor perovskite were investigated. The impedance spectroscopy was carried out as a function of a thermal cycle. The sodium lithium niobate was synthesized by a chemical route based on the evaporation method. Dense ceramic, relative density of 97%, was prepared at 1423 K for 2 h in air atmosphere. ac measurements were carried out in the frequency range of 5 Hz-13 MHz and from 673 to 1023 K. Theoretical adjust of the impedance data was performed to deriving the electric parameters of the grain boundary. The electric conductivity follows the Arrhenius law, with activation energy values equal to 1.55 and 1.54 eV for heating and cooling cycle, respectively. The nonferroelectric state of the grain boundary and its correlation with symmetry are discussed in the temperature domain. (C) 2003 American Institute of Physics.