903 resultados para Unmanned Aerial Vehicles (UAVs)
Resumo:
Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.
Resumo:
Unmanned Aircraft Systems (UAS) are one of a number of emerging aviation sectors. Such new aviation concepts present a significant challenge to National Aviation Authorities (NAAs) charged with ensuring the safety of their operation within the existing airspace system. There is significant heritage in the existing body of aviation safety regulations for Conventionally Piloted Aircraft (CPA). It can be argued that the promulgation of these regulations has delivered a level of safety tolerable to society, thus justifying the “default position” of applying these same standards, regulations and regulatory structures to emerging aviation concepts such as UAS. An example of this is the proposed “1309” regulation for UAS, which is based on the 1309 regulation for CPA. However, the absence of a pilot on-board an unmanned aircraft creates a fundamentally different risk paradigm to that of CPA. An appreciation of these differences is essential to the justification of the “default position” and in turn, to ensure the development of effective safety standards and regulations for UAS. This paper explores the suitability of the proposed “1309” regulation for UAS. A detailed review of the proposed regulation is provided and a number of key assumptions are identified and discussed. A high-level model characterising the expected number of third party fatalities on the ground is then used to determine the impact of these assumptions. The results clearly show that the “one size fits all” approach to the definition of 1309 regulations for UAS, which mandates equipment design and installation requirements independent of where the UAS is to be operated, will not lead to an effective management of the risks.
Resumo:
With the emergence of Unmanned Aircraft Systems (UAS) there is a growing need for safety standards and regulatory frameworks to manage the risks associated with their operations. The primary driver for airworthiness regulations (i.e., those governing the design, manufacture, maintenance and operation of UAS) are the risks presented to people in the regions overflown by the aircraft. Models characterising the nature of these risks are needed to inform the development of airworthiness regulations. The output from these models should include measures of the collective, individual and societal risk. A brief review of these measures is provided. Based on the review, it was determined that the model of the operation of an UAS over inhabited areas must be capable of describing the distribution of possible impact locations, given a failure at a particular point in the flight plan. Existing models either do not take the impact distribution into consideration, or propose complex and computationally expensive methods for its calculation. A computationally efficient approach for estimating the boundary (and in turn area) of the impact distribution for fixed wing unmanned aircraft is proposed. A series of geometric templates that approximate the impact distributions are derived using an empirical analysis of the results obtained from a 6-Degree of Freedom (6DoF) simulation. The impact distributions can be aggregated to provide impact footprint distributions for a range of generic phases of flight and missions. The maximum impact footprint areas obtained from the geometric template are shown to have a relative error of typically less than 1% compared to the areas calculated using the computationally more expensive 6DoF simulation. Computation times for the geometric models are on the order of one second or less, using a standard desktop computer. Future work includes characterising the distribution of impact locations within the footprint boundaries.
Resumo:
A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle and at the same time to minimize a prescribed criterion such as time, energy, payload or combination of those. Indeed, the major issue is that due to the vehicles' design and the actuation modes usually under consideration for underwater platforms the number of actuator switchings must be kept to a small value to ensure feasibility and precision. This constraint is typically not verified by optimal trajectories which might not even be piecewise constants. Our goal is to provide a feasible trajectory that minimizes the number of switchings while maintaining some qualities of the desired trajectory, such as optimality with respect to a given criterion. The one-sided Lipschitz constant is used to derive theoretical estimates. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six degrees-of-freedom and one is minimally actuated with control motions constrained to the vertical plane.
Resumo:
This paper presents a reactive Sense and Avoid approach using spherical image-based visual servoing. Avoidance of point targets in the lateral or vertical plane is achieved without requiring an estimate of range. Simulated results for static and dynamic targets are provided using a realistic model of a small fixed wing unmanned aircraft.
Rotorcraft collision avoidance using spherical image-based visual servoing and single point features
Resumo:
This paper presents a reactive collision avoidance method for small unmanned rotorcraft using spherical image-based visual servoing. Only a single point feature is used to guide the aircraft in a safe spiral like trajectory around the target, whilst a spherical camera model ensures the target always remains visible. A decision strategy to stop the avoidance control is derived based on the properties of spiral like motion, and the effect of accurate range measurements on the control scheme is discussed. We show that using a poor range estimate does not significantly degrade the collision avoidance performance, thus relaxing the need for accurate range measurements. We present simulated and experimental results using a small quad rotor to validate the approach.
Resumo:
The development of an intelligent plug-in electric vehicle (PEV) network is an important research topic in the smart grid environment. An intelligent PEV network enables a flexible control of PEV charging and discharging activities and hence PEVs can be utilized as ancillary service providers in the power system concerned. Given this background, an intelligent PEV network architecture is first developed, and followed by detailed designs of its application layers, including the charging and discharging controlling system, mobility and roaming management, as well as communication mechanisms associated. The presented architecture leverages the philosophy in mobile communication network buildup
Resumo:
The aim of this paper is to implement a Game-Theory based offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. The goal of this work is then to develop a Multi-Objective (MO) optimisation tool able to provide a set of optimal solutions for the inspection task, given the environment data, the mission requirements and the definition of the objectives to minimise. Results indicate the robustness and capability of the method to find the trade-off between the Pareto-optimal solutions.
Resumo:
The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots.
Resumo:
Emission rates of ammonia (NH3) are reported for a fleet of 130 light-, medium-, and heavy-duty vehicles recruited in Guangzhou, China. NH3 measurements were performed using Nessler's Reagents spectrophotometry and nationwide standard chassis dynamometer test cycles required by Chinese EPA. Emissions of CO and NOx were also measured during these test cycles. Emission factors of NH3 were calculated for each type of vehicle and used to estimate the total emissions of NH3 from motor vehicles in Guangzhou (GZ) in 2009. Emission factors of NH3 show large variations among different categories of vehicles, with a range from 4 to 138 mg km-1. The average emissions of NH3 in Guangzhou in 2009 were estimated to be 983 t, with a range from 373 to 2136 t. In addition, it was found that vehicles with the highest NH3 emission rates possess the following characteristics: mediumand heavy-duty vehicles, certified with out-of-date emission standards, mid-range odometer readings, and higher CO and NOx emission rates. The results of this study will be useful for developing NH3 emissions inventories in Guangzhou and other urban areas in China.
Resumo:
KEEP CLEAR pavement markings are widely used at urban signalised intersections to indicate to drivers to avoid entering blocked intersections. For example, ‘Box junctions’ are most widely used in the United Kingdom and other European countries. However, in Australia, KEEP CLEAR markings are mostly used to improve access from side roads onto a main road, especially when the side road is very close to a signalised intersection. This paper aims to reveal how the KEEP CLEAR markings affect the dynamic performance of the queuing vehicles on the main road, where the side road access is near a signalised intersection. Raw traffic field data was collected from an intersection at the Gold Coast, Australia, and the Kanade–Lucas–Tomasi (KLT) feature tracker approach was used to extract dynamic vehicle data from the raw video footage. The data analysis reveals that the KEEP CLEAR markings generate positive effects on the queuing vehicles in discharge on the main road. This finding refutes the traditional viewpoint that the KEEP CLEAR pavement markings will cause delay for the queuing vehicles’ departure due to the enlarged queue spacing. Further studies are suggested in this paper as well.
Resumo:
Plug-in electric vehicles (PEVs) are increasingly popular in the global trend of energy saving and environmental protection. However, the uncoordinated charging of numerous PEVs can produce significant negative impacts on the secure and economic operation of the power system concerned. In this context, a hierarchical decomposition approach is presented to coordinate the charging/discharging behaviors of PEVs. The major objective of the upper-level model is to minimize the total cost of system operation by jointly dispatching generators and electric vehicle aggregators (EVAs). On the other hand, the lower-level model aims at strictly following the dispatching instructions from the upper-level decision-maker by designing appropriate charging/discharging strategies for each individual PEV in a specified dispatching period. Two highly efficient commercial solvers, namely AMPL/IPOPT and AMPL/CPLEX, respectively, are used to solve the developed hierarchical decomposition model. Finally, a modified IEEE 118-bus testing system including 6 EVAs is employed to demonstrate the performance of the developed model and method.
Resumo:
As a good solution to the shortage and environmental unfriendliness of fossil fuels, plug-in electric vehicles (PEVs) attract much interests of the public. To investigate the problems caused by the integration of numerous PEVs, a lot of research work has been done on the grid impacts of PEVs in aspects including thermal loading, voltage regulation, transformer loss of life, unbalance, losses, and harmonic distortion levels. This paper surveys the-state-of-the-art of the research in this area and outline three possible measures for a power grid company to make full use of PEVs.
Resumo:
This paper presents an innovative and practical approach to controlling heave motion in the presence of acute stochastic atmospheric disturbances during landing operations of an Unmanned Autonomous Helicopter (UAH). A heave motion model of an UAH is constructed for the purpose of capturing dynamic variations of thrust due to horizontal wind gusts. Additionally, through construction of an effective observer to estimate magnitudes of random gusts, a promising and feasible feedback-feedforward PD controller is developed, based on available measurements from onboard equipment. The controller dynamically and synchronously compensates for aerodynamic variations of heave motion resulting from gust influence, to increase the disturbance-attenuation ability of the UAH in a windy environment. Simulation results justify the reliability and efficiency of the suggested gust observer to estimate gust levels when applied to the heave motion model of a small unmanned helicopter, and verify suitability of the recommended control strategy to realistic environmental conditions.
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.