974 resultados para Temperaturas óptimas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of real-time networks is under continuous improvement as a result of several trends in the digital world. However, these tendencies not only cause improvements, but also exacerbates a series of unideal aspects of real-time networks such as communication latency, jitter of the latency and packet drop rate. This Thesis focuses on the communication errors that appear on such realtime networks, from the point-of-view of automatic control. Specifically, it investigates the effects of packet drops in automatic control over fieldbuses, as well as the architectures and optimal techniques for their compensation. Firstly, a new approach to address the problems that rise in virtue of such packet drops, is proposed. This novel approach is based on the simultaneous transmission of several values in a single message. Such messages can be from sensor to controller, in which case they are comprised of several past sensor readings, or from controller to actuator in which case they are comprised of estimates of several future control values. A series of tests reveal the advantages of this approach. The above-explained approach is then expanded as to accommodate the techniques of contemporary optimal control. However, unlike the aforementioned approach, that deliberately does not send certain messages in order to make a more efficient use of network resources; in the second case, the techniques are used to reduce the effects of packet losses. After these two approaches that are based on data aggregation, it is also studied the optimal control in packet dropping fieldbuses, using generalized actuator output functions. This study ends with the development of a new optimal controller, as well as the function, among the generalized functions that dictate the actuator’s behaviour in the absence of a new control message, that leads to the optimal performance. The Thesis also presents a different line of research, related with the output oscillations that take place as a consequence of the use of classic co-design techniques of networked control. The proposed algorithm has the goal of allowing the execution of such classical co-design algorithms without causing an output oscillation that increases the value of the cost function. Such increases may, under certain circumstances, negate the advantages of the application of the classical co-design techniques. A yet another line of research, investigated algorithms, more efficient than contemporary ones, to generate task execution sequences that guarantee that at least a given number of activated jobs will be executed out of every set composed by a predetermined number of contiguous activations. This algorithm may, in the future, be applied to the generation of message transmission patterns in the above-mentioned techniques for the efficient use of network resources. The proposed task generation algorithm is better than its predecessors in the sense that it is capable of scheduling systems that cannot be scheduled by its predecessor algorithms. The Thesis also presents a mechanism that allows to perform multi-path routing in wireless sensor networks, while ensuring that no value will be counted in duplicate. Thereby, this technique improves the performance of wireless sensor networks, rendering them more suitable for control applications. As mentioned before, this Thesis is centered around techniques for the improvement of performance of distributed control systems in which several elements are connected through a fieldbus that may be subject to packet drops. The first three approaches are directly related to this topic, with the first two approaching the problem from an architectural standpoint, whereas the third one does so from more theoretical grounds. The fourth approach ensures that the approaches to this and similar problems that can be found in the literature that try to achieve goals similar to objectives of this Thesis, can do so without causing other problems that may invalidate the solutions in question. Then, the thesis presents an approach to the problem dealt with in it, which is centered in the efficient generation of the transmission patterns that are used in the aforementioned approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes the synthesis and characterization of different phthalocyanine (Pc) derivatives, as well as some porphyrins (Pors), for supramolecular interaction with different carbon nanostructures, to evaluate their potential application in electronic nanodevices. Likewise, it is also reported the preparation and biological evaluation of interesting phthalocyanine conjugates for cancer photodynamic therapy (PDT) and microorganisms photodynamic inactivation (PDI). The phthalonitrile precursors were prepared from commercial phthalonitriles by nucleophilic substitution of -NO2, -Cl, or -F groups, present in the phthalonitrile core, by thiol or pyridyl units. After the synthesis of these phthalonitriles, the corresponding Pcs were prepared by ciclotetramerization using a metallic salt as template at high temperatures. A second strategy involved the postfunctionalization of hexadecafluorophthalocyaninato zinc(II) through the adequate substituents of mercaptopyridine or cyclodextrin units on the macrocycle periphery. The different compounds were structurally characterized by diverse spectroscopic techniques, namely 1H, 13C and 19F nuclear magnetic resonance spectroscopies (attending the elemental composition of each structure); absorption and emission spectroscopy, and mass spectrometry. For the specific photophysical studies were also used electrochemical characterization, femtosecond and raman spectroscopy, transmission electron and atomic force microscopy. It was highlighted the noncovalent derivatisation of carbon nanostructures, mainly single wall carbon nanotubes (SWNT) and graphene nanosheets with the prepared Pc conjugates to study the photophysical properties of these supramolecular nanoassemblies. Also, from pyridyl-Pors and ruthenium phthalocyanines (RuPcs) were performed Por-RuPcs arrays via coordination chemistry. The results obtained of the novel supramolecular assemblies showed interesting electron donor-acceptor interactions and might be considered attractive candidates for nanotechnological devices. On the other hand, the amphiphilic phthalocyanine-cyclodextrin (Pc-CD) conjugates were tested in biological trials to assess their ability to inhibit UMUC- 3 human bladder cancer cells. The results obtained demonstrated that these photoactive conjugates are highly phototoxic against human bladder cancer cells and could be applied as promising PDT drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directionally solidified zirconia-based eutectic (DSE) fibres were obtained using the laser floating zone (LFZ) method. Two systems were investigated: zirconia-barium zirconate and zirconia-mullite. The purpose was to take advantage of zirconia properties, particularly as an ionic conductor and a mechanical rein-forcement phase. The influence of processing conditions in the structural and microstructural characteristics and their consequences on the electrical and mechanical behaviour were the focus of this thesis. The novel zirconia-barium zirconate eutectic materials were developed in order to combine oxygen ionic conduction through zirconia with protonic conduction from barium zirconate, promoting mixed ionic conduction behaviour. The mi-crostructure of the fibres comprises two alternated regions: bands having coarser zirconia-rich microstructure; and inter-band regions changing from a homogeneous coupled eutectic, at the lowest pulling rate, to columnar colony microstructure, for the faster grown fibres. The bands inter-distance increases with the growth rate and, at 300 mm/h, zirconia dendrites develop enclosed in a fine-interpenetrated network of 50 vol.% ZrO2-50 vol.% BaZrO3. Both phases display contiguity without interphase boundaries, according to impedance spec-troscopy data. Yttria-rich compositions were considered in order to promote the yttrium incorporation in both phases, as revealed by Raman spectroscopy and corroborated by the elemental chemical analysis in energy dispersive spectros-copy. This is a mandatory condition to attain simultaneous contribution to the mixed ionic conduction. Such results are supported by impedance spectrosco-py measurements, which clearly disclose an increase of total ionic conduction for lower temperatures in wet/reduction atmospheres (activation energies of 35 kJ/mol in N2+H2 and 48 kJ/mol in air, in the range of 320-500 ºC) compared to the dry/oxidizing conditions (attaining values close to 90 kJ/mol, above 500 ºC). At high temperatures, the proton incorporation into the barium zirconate is un-favourable, so oxygen ion conduction through zirconia prevails, in dry and oxi-dizing environments, reaching a maximum of 1.3x10-2 S/cm in dry air, at ~1000 ºC. The ionic conduction of zirconia was alternatively combined with another high temperature oxygen ion conductor, as mullite, in order to obtain a broad elec-trolytic domain. The growth rate has a huge influence in the amount of phases and microstructure of the directionally solidified zirconia-mullite fibres. Their microstructure changes from planar coupled eutectic to dendritic eutectic mor-phology, when the growth rate rises from 1 to 500 mm/h, along with an incre-ment of tetragonal zirconia content. Furthermore, high growth rates lead to the development of Al-Si-Y glassy phase, and thus less mullite amount, which is found to considerably reduce the total ionic conduction of as-grown fibres. The reduction of the glassy phase content after annealing (10h; 1400 ºC) promotes an increase of the total ionic conduction (≥0.01 S/cm at 1370 °C), raising the mullite and tetragonal zirconia contents and leading to microstructural differ-ences, namely the distribution and size of the zirconia constituent. This has important consequences in conductivity by improving the percolation pathways. A notable increase in hardness is observed from 11.3 GPa for the 10 mm/h pulled fibre to 21.2 GPa for the fibre grown at 500 mm/h. The ultra-fine eutectic morphology of the 500 mm/h fibres results in a maximum value of 534 MPa for room temperature bending strength, which decreases to about one-fourth of this value at high temperature testing (1400 ºC) due to the soft nature of the glassy-matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solid-fluid transition properties of the n - 6 Lennard-Jones system are studied by means of extensive free energy calculations. Different values of the parameter n which regulates the steepness of the short-range repulsive interaction are investigated. Furthermore, the free energies of the n < 12 systems are calculated using the n = 12 system as a reference. The method relies on a generalization of the multiple histogram method that combines independent canonical ensemble simulations performed with different Hamiltonians and computes the free energy difference between them. The phase behavior of the fullerene C60 solid is studied by performing NPT simulations using atomistic models which treat each carbon in the molecule as a separate interaction site with additional bond charges. In particular, the transition from an orientationally frozen phase at low temperatures to one where the molecules are freely rotating at higher temperatures is studied as a function of applied pressure. The adsorption of molecular hydrogen in the zeolite NaA is investigated by means of grand-canonical Monte Carlo, in a wide range of temperatures and imposed gas pressures, and results are compared with available experimental data. A potential model is used that comprises three main interactions: van der Waals, Coulomb and induced polarization by the permanent electric field in the zeolite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis aims at improving the knowledge on the post-fire vegetation regeneration. For that, forests and shrublands were studied, after forest fires and experimental fires. Maritime Pine (Pinus pinaster) recruitment after fire was studied. Fire severity was evidenced as a major effect on this process. High crown fire severity can combust the pines, destroying the seed bank and impeding post fire pine recruitment. However, crown combustion also influences the post-fire conditions on the soil surface, since high crown combustion (HCC) will decrease the postfire needle cast. After low crown combustion (LCC) (scorched rather than torched crowns), a considerable needle cover was observed, along with a higher density of pine seedlings. The overall trends of post-fire recruitment among LCC and HCC areas could be significantly attributed to cover by needles, as well by the estimation of fire severity using the diameters of the burned twigs (TSI). Fire increased the germination from the soil seed bank of a Pinus pinaster forest, and the effects were also related with fire severity. The densities of seedlings of the dominant taxa (genus Erica and Calluna vulgaris) were contrastingly affected in relation to the unburned situation, depending on fire severity, as estimated from the degree of fire-induced crown damage (LCC/HCC), as well as using a severity index based on the diameters of remaining twigs (TSI). Low severity patches had an increase in germination density relatively to the control, while high severity patches suffered a reduction. After an experimental fire in a heathland dominated by Pterospartum tridentatum, Erica australis and E. umbellata, no net differences in seedling emergence were observed, in relation to the pre-fire situation. However, rather than having no effect, the heterogeneity of temperatures caused by fire promoted caused divergent effects over the burned plot in terms of Erica australis germination – a progressive increased was observed in the plots were maximum temperature recorded ranged from 29 to 42.5ºC and decreased in plots with maximum temperature ranging from 51.5 to 74.5ºC. In this heathland, the seed density of two of the main species (E. australis and E. umbellata) was higher under their canopies, but the same was not true for P. tridentatum. The understory regeneration in pine and eucalypt stands, 5 to 6 years post fire, has been strongly associated with post-fire management practices. The effect of forest type was, comparatively, insignificant. Soil tilling, tree harvesting and shrub clearance, were linked to lower soil cover percentages. However, while all these management operations negatively affected the cover of resprouters, seeders were not affected by soil tilling. A strong influence of biogeographic region was identified, suggesting that more vulnerable regions may suffer higher effects of management, even under comparatively lower management pressure than more productive regions. This emphasizes the need to adequate post-fire management techniques to the target regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was focused on the analysis of transport, thermomechanical and electrochemical properties of a series of perovskite-like oxide materials and composites for potential applications as anodes of intermediate-temperature solid oxide fuel cells (SOFCs) with lanthanum gallate and silicate solid electrolytes. The primary attention was centered on A(Mn,Nb)O3-δ (A = Sr, Ca) and (La,Sr)(Mn,Ti)O3-based systems, lanthanum chromite substituted with acceptor-type and variable-valence cations, and various Ni-containing cermets. Emphasis was given to phase stability of the materials, their crystal structure, microstructure of porous electrode layers and dense ceramics, electronic conductivity, Seebeck coefficient, oxygen permeability, thermal and chemical induced expansion, and anodic overpotentials of the electrodes deposited onto (La,Sr)(Ga,Mg)O3- and La10(Si,Al)6O27- based electrolyte membranes. In selected cases, roles of oxygen diffusivity, states of the transition metal cations relevant for the electronic transport, catalytically active additives and doped ceria protective interlayers introduced in the model electrochemical cells were assessed. The correlations between transport properties of the electrode materials and electrochemical behavior of porous electrodes showed that the principal factors governing anode performance include, in particular, electronic conduction of the anode compositions and cation interdiffusion between the electrodes and solid electrolytes. The latter is critically important for the silicatebased electrolyte membranes, leading to substantially worse anode properties compared to the electrochemical cells with lanthanum gallate solid electrolyte. The results made it possible to select several anode compositions exhibiting lower area-specific electrode resistivity compared to known analogues, such as (La,Sr)(Cr,Mn)O3-δ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this PhD thesis was to provide convincing demonstration for a breakthrough concept of pyroelectrolysis at laboratory scale. One attempted to identify fundamental objections and/or the most critical constraints, to propose workable concepts for the overall process and for feasible electrodes, and to establish the main requirements on a clearer basis. The main effort was dedicated to studying suitable anode materials to be developed for large scale industrial units with molten silicate electrolyte. This concept relies on consumable anodes based on iron oxides, and a liquid Fe cathode, separated from the refractory materials by a freeze lining (solid) layer. In addition, one assessed an alternative concept of pyroelectrolysis with electron blocking membranes, and developed a prototype at small laboratory scale. The main composition of the molten electrolyte was based on a magnesium aluminosilicate composition, with minimum liquidus temperature, and with different additions of iron oxide. One studied the dynamics of devitrification of these melts, crystallization of iron oxides or other phases, and Fe2+/Fe3+ redox changes under laser zone melting, at different pulling rates. These studies were intended to provide guidelines for dissolution of raw materials (iron oxides) in the molten electrolyte, to assess compatibility with magnetite based consumable anodes, and to account for thermal gradients or insufficient thermal management in large scale cells. Several laboratory scale prototype cells were used to demonstrate the concept of pyroelectrolysis with electron blocking, and to identify the most critical issues and challenges. Operation with and without electron blocking provided useful information on transport properties of the molten electrolyte (i.e., ionic and electronic conductivities), their expected dependence on anodic and cathodic overpotentials, limitations in faradaic efficiency, and onset of side electrochemical reactions. The concept of consumable anodes was based on magnetite and derived spinel compositions, for their expected redox stability at high temperatures, even under oxidising conditions. Spinel compositions were designed for prospective gains in refractoriness and redox stability in wider ranges of conditions (T, pO2 and anodic overpotentials), without excessive penalty for electrical conductivity, thermomechanical stability or other requirements. Composition changes were also mainly based on components of the molten aluminosilicate melt, to avoid undue contamination and to minimize the dissolution rate of consumable anodes. Additional changes in composition were intended for prospective pyroelectrolysis of Fe alloys, with additions of different elements (Cr, Mn, Ni, Ti).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brazilian Cerrado houses a hugely diverse biota and is considered a conservation hotspot. One of the greatest threats to the integrity of this ecosystem is introduced African grasses, which can competitively exclude native grasses and cause changes in the microclimate and other disturbances. The Cerrado is a mosaic vegetation that provides different combinations, both spatially and temporally, of conditions that can become natural stressors to the herbaceous vegetation (water, nutrient and light availability). These mosaics are reflected in differences in relationships among native and invasive species, affecting competition and creating situations (place/season) that are more, or less, susceptible to invasion. The present study aimed to identify the different biological responses of native (Aristida recurvata, Aristida setifolia, Axonopus barbigerus, Echinolaena inflexa, Gymnopogon spicatus, Paspalum gardnerianum, Paspalum stellatum, Schizachyrium microstachyum, Schizachyrium sanguineum) and invasive (Melinis minutiflora and Andropogon gayanus) grasses to variations in natural stressors and to disturbance (fire and clipping), in order to understand changes in ecosystem functioning and competition processes between the grasses, and to understand invasion dynamics in this ecosystem. The presence of invasive species proved to affect the ecosystem functioning by increasing soil feeding activity. These differences were no longer observed in the dry season or when fires were frequent, showing that water availability and fire are more detrimental to soil feeding activity than is the vegetation. Laboratory experiments showed that both drought and flood simulated scenarios damaged both species, although the invasive species performed better under all watering conditions and responded better to fertilization. Underlying mechanisms such as the efficiency of photosynthesis and antioxidant mechanisms helped to explain this behavior. The invasive species grew faster and showed less cellular damage and a healthier photosystem, reflected in higher assimilation rates under stress. These differences between the native and invasive species were reduced with clipping, especially in dry soil with no fertilization, where the native species recovered better in relation to the pre-clipping levels. Flooding was as stressful as drought, but the invasive species can bypass this issue by growing an extensive root system, especially in the better-drained soils. Fire is more detrimental than clipping, with a slower recovery, while post-fire temperatures affect the germination of both invasive and native seeds and may be an important factor influencing the persistence of a diverse biota. This approach will finally contribute to the choice of the appropriate management techniques to preserve the Cerrado’s biodiversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the more promising possibilities for future “green” electrical energy generation is the protonic ceramic fuel cell (PCFC). PCFCs offer a low-pollution technology to generate electricity electrochemically with high efficiency. Reducing the operating temperature of solid oxide fuel cells (SOFCs) to the 500-700°C range is desirable to reduce fabrication costs and improve overall longevity. This aim can be achieved by using protonic ceramic fuel cells (PCFCs) due to their higher electrolyte conductivity at these temperatures than traditional ceramic oxide-ion conducting membranes. This thesis deals with the state of the art Ni-BaZr0.85Y0.15O3-δ cermet anodes for PCFCs. The study of PCFCs is in its initial stage and currently only a few methods have been developed to prepare suitable anodes via solid state mechanical mixing of the relevant oxides or by combustion routes using nitrate precursors. This thesis aims to highlight the disadvantages of these traditional methods of anode preparation and to, instead, offer a novel, efficient and low cost nitrate free combustion route to prepare Ni-BaZr0.85Y0.15O3-δ cermet anodes for PCFCs. A wide range of techniques mainly X-ray diffraction (XRD), scanning electron microscopy (SEM), environmental scanning electron microscopy, (ESEM) and electrochemical impedance spectroscopy (EIS) were employed in the cermet anode study. The work also offers a fundamental examination of the effect of porosity, redox cycling behaviour, involvement of proton conducting oxide phase in PCFC cermet anodes and finally progresses to study the electrochemical performance of a state of the art anode supported PCFC. The polarisation behaviour of anodes has been assessed as a function of temperature (T), water vapour (pH2O), hydrogen partial pressures (pH2) and phase purity for electrodes of comparable microstructure. The impedance spectra generally show two arcs at high frequency R2 and low frequency R3 at 600 °C, which correspond to the electrode polarisation resistance. Work shows that the R2 and R3 terms correspond to proton transport and dissociative H2 adsorption on electrode surface, respectively. The polarization resistance of the cermet anode (Rp) was shown to be significantly affected by porosity, with the PCFC cermet anode with the lowest porosity exhibiting the lowest Rp under standard operating conditions. This result highlights that porogens are not required for peak performance in PCFC anodes, a result contrary to that of their oxide-ion conducting anode counterparts. In-situ redox cycling studies demonstrate that polarisation behaviour was drastically impaired by redox cycling. In-situ measurements using an environmental scanning electron microscopy (ESEM) reveal that degradation proceeds due to volume expansion of the Ni-phase during the re-oxidation stage of redox cycling.The anode supported thin BCZY44 based protonic ceramic fuel cell, formed using a peak performing Ni-BaZr0.85Y0.15O3-δ cermet anode with no porogen, shows promising results in fuel cell testing conditions at intermediate temperatures with good durability and an overall performance that exceeds current literature data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental contamination and climate changes constitute two of the most serious problems affecting soil ecosystems in agricultural fields. Agriculture is nowadays a highly optimized process that strongly relies on the application of multiple pesticides to reduce losses and increase yield production. Although constituting, per se, a serious problem to soil biota, pesticide mixtures can assume an even higher relevance in a context of unfavourable environmental conditions. Surprisingly, frameworks currently established for environmental risk assessments keep not considering environmental stressors, such as temperature, soil moisture or UV radiation, as factors liable to influence the susceptibility of organisms to pesticides, or pesticide mixtures, which is raising increasing apprehension regarding their adequacy to actually estimate the risks posed by these compounds to the environment. Albeit the higher attention received on the last few years, the influence of environmental stressors on the behaviour and toxicity of chemical mixtures remains still poorly understood. Aiming to contribute for this discussion, the main goal of the present thesis was to evaluate the single and joint effects of natural stressors and pesticides to the terrestrial isopod Porcellionides pruinosus. The first approach consisted on evaluating the effects of several abiotic factors (temperature, soil moisture and UV radiation) on the performance of P. pruinosus using several endpoints: survival, feeding parameters, locomotor activity and avoidance behaviour. Results showed that these stressors might indeed affect P. pruinosus at relevant environmental conditions, thus suggesting the relevance of their consideration in ecotoxicological assays. At next, a multiple biomarker approach was used to have a closer insight into the pathways of damage of UV radiation and a broad spectrum of processes showed to be involved (i.e. oxidative stress, neurotoxicity, energy). Furthermore, UV effects showed to vary with the environment medium and growth-stage. A similar biomarker approach was employed to assess the single and joint effects of the pesticides chlorpyrifos and mancozeb to P. pruinosus. Energy-related biomarkers showed to be the most differentiating parameters since age-classes seemed to respond differently to contamination stress and to have different metabolic costs associated. Finally, the influence of temperature and soil moisture on the toxicity of pesticide mixtures was evaluated using survival and feeding parameters as endpoints. Pesticide-induced mortality was found to be oppositely affected by temperature, either in single or mixture treatments. Whereas chlorpyrifos acute toxicity was raised under higher temperatures the toxicity of mancozeb was more prominent at lower temperatures. By the opposite, soil moisture showed no effects on the pesticide-induced mortality of isopods. Contrary to survival, both temperature and soil moisture showed to interact with pesticides to influence isopods’ feeding parameters. Nonetheless, was however the most common pattern. In brief, findings reported on this thesis demonstrated why the negligence of natural stressors, or multiple stressors in general, is not a good solution for risk assessment frameworks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ionic liquids are a class of solvents that, due to their unique properties, have been proposed in the past few years as alternatives to some hazardous volatile organic compounds. They are already used by industry, where it was possible to improve different processes by the incorporation of this kind of non-volatile and often liquid solvents. However, even if ionic liquids cannot contribute to air pollution, due to their negligible vapour pressures, they can be dispersed thorough aquatic streams thus contaminating the environment. Therefore, the main goals of this work are to study the mutual solubilities between water and different ionic liquids in order to infer on their environmental impact, and to propose effective methods to remove and, whenever possible, recover ionic liquids from aqueous media. The liquid-liquid phase behaviour of different ionic liquids and water was evaluated in the temperature range between (288.15 and 318.15) K. For higher melting temperature ionic liquids a narrower temperature range was studied. The gathered data allowed a deep understanding on the structural effects of the ionic liquid, namely the cation core, isomerism, symmetry, cation alkyl chain length and the anion nature through their mutual solubilities (saturation values) with water. The experimental data were also supported by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS), and for some more specific systems, molecular dynamics simulations were also employed for a better comprehension of these systems at a molecular level. On the other hand, in order to remove and recover ionic liquids from aqueous solutions, two different methods were studied: one based on aqueous biphasic systems, that allowed an almost complete recovery of hydrophilic ionic liquids (those completely miscible with water at temperatures close to room temperature) by the addition of strong salting-out agents (Al2(SO4)3 or AlK(SO4)2); and the other based on the adsorption of several ionic liquids onto commercial activated carbon. The first approach, in addition to allowing the removal of ionic liquids from aqueous solutions, also makes possible to recover the ionic liquid and to recycle the remaining solution. In the adsorption process, only the removal of the ionic liquid from aqueous solutions was attempted. Nevertheless, a broad understanding of the structural effects of the ionic liquid on the adsorption process was attained, and a final improvement on the adsorption of hydrophilic ionic liquids by the addition of an inorganic salt (Na2SO4) was also achieved. Yet, the development of a recovery process that allows the reuse of the ionic liquid is still required for the development of sustainable processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials for an intended application. Hence, polycrystalline KNN ceramics (undoped, non-stoichiometric; NST and doped), high-quality KNN single crystals and textured KNN based ceramics were successfully synthesized and characterized in this work. Polycrystalline undoped, non-stoichiometric (NST) and Mn doped KNN ceramics were prepared by conventional ceramic processing. Structure, microstructure and electrical properties were measured. It was observed that the window for mono-phasic compositions was very narrow for both NST ceramics and Mn doped ceramics. For NST ceramics the variation of A/B ratio influenced the polarization (P-E) hysteresis loop and better piezoelectric and dielectric responses could be found for small stoichiometry deviations (A/B = 0.97). Regarding Mn doping, as compared to undoped KNN which showed leaky polarization (P-E) hysteresis loops, B-site Mn doped ceramics showed a well saturated, less-leaky hysteresis loop and a significant properties improvement. Impedance spectroscopy was used to assess the role of Mn and a relation between charge transport – defects and ferroelectric response in K0.5Na0.5NbO3 (KNN) and Mn doped KNN ceramics could be established. At room temperature the conduction in KNN which is associated with holes transport is suppressed by Mn doping. Hence Mn addition increases the resistivity of the ceramic, which proved to be very helpful for improving the saturation of the P-E loop. At high temperatures the conduction is dominated by the motion of ionized oxygen vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 μC/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that <001> - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. Polarized Raman analysis of ferroelectric potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) single crystals was performed. For the first time, an evidence is provided that supports the assignment of KNN single crystals structure to the monoclinic symmetry at room temperature. Intensities of A′, A″ and mixed A′+A″ phonons have been theoretically calculated and compared with the experimental data in dependence of crystal rotation, which allowed the precise determination of the Raman tensor coefficients for (non-leaking) modes in monoclinic KNN. In relation to the previous literature, this study clarifies that assigning monoclinic phase is more suitable than the orthorhombic one. In addition, this study is the basis for non-destructive assessments of domain distribution by Raman spectroscopy in KNN-based lead-free ferroelectrics with complex structures. Searching a deeper understanding of the electrical behaviour of both KNN single crystal and polycrystalline materials for the sake of designing optimized KNN materials, a comparative study at the level of charge transport and point defects was carried out by impedance spectroscopy. KNN single crystals showed lower conductivity than polycrystals from room temperature up to 200 ºC, but above this temperature polycrystalline KNN displays lower conductivity. The low temperature (T < 200 ºC) behaviour reflects the different processing conditions of both ceramics and single crystals, which account for less defects prone to charge transport in the case of single crystals. As temperature increases (T > 200 ºC) single crystals become more conductive than polycrystalline samples, in which grain boundaries act as barriers to charge transport. For even higher temperatures the conductivity difference between both is increased due to the contribution of ionic conduction in single crystals. Indeed the values of activation energy calculated to the high temperature range (T > 300 ºC) were 1.60 and 0.97 eV, confirming the charge transport due to ionic conduction and ionized oxygen vacancies in single crystals and polycrystalline KNN, respectively. It is suggested that single crystals with low defects content and improved electromechanical properties could be a better choice for room temperature applications, though at high temperatures less conductive ceramics may be the choice, depending on the targeted use. Aiming at engineering the properties of KNN polycrystals towards the performance of single crystals, the preparation and properties study of (001) – oriented (K0.5Na0.5)0.98Li0.02NbO3 (KNNL) ceramics obtained by templated grain growth (TGG) using KNN single crystals as templates was undertaken. The choice of KNN single crystals templates is related with their better properties and to their unique domain structure which were envisaged as a tool for templating better properties in KNN ceramics too. X-ray diffraction analysis revealed for the templated ceramics a monoclinic structure at room temperature and a Lotgering factor (f) of 40% which confirmed texture development. These textured ceramics exhibit a long range ordered domain pattern consisting of 90º and 180º domains, similar to the one observed in the single crystals. Enhanced dielectric (13017 at TC), ferroelectric (2Pr = 42.8 μC/cm2) and piezoelectric (d33 = 280 pC/N) properties are observed for textured KNNL ceramics as compared to the randomly oriented ones. This behaviour is suggested to be due to the long range ordered domain patterns observed in the textured ceramics. The obtained results as compared with the data previously reported on texture KNN based ceramics confirm that superior properties were found due to ordered repeated domain pattern. This study provides an useful approach towards properties improvement of KNN-based piezoelectric ceramics. Overall, the present results bring a significant contribution to the pool of knowledge on the properties of sodium potassium niobate materials: a relation between the domain patterns and di-, ferro-, and piezo-electric response of single crystals and ceramics was demonstrated and ways of engineering maximised properties in KNN materials, for example by texturing were established. This contribution is envisaged to have broad implications for the expanded use of KNN over the alternative lead-based materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nas últimas décadas, a Terra tem experimentado um aquecimento global e mudanças nos padrões de precipitação. Muitos estudos sobre a avaliação de risco de agrotóxicos em organismos não-alvo foram realizados com base em protocolos padronizados, com condições abióticas controladas. Mas, em campo, os organismos são expostos a flutuações de vários fatores ambientais, bem como a poluentes, que podem alterar os limites de tolerância dos organismos aos stressores naturais, bem como alterar a toxicidade ou biodisponibilidade do químico em causa. Considerando isso, o principal objetivo deste trabalho foi o de avaliar de que modo e em que medida os fatores ambientais (temperatura, humidade do solo e radiação UV) podem interagir uns com os outros ou afetar a toxicidade do carbaril para invertebrados do solo e plantas. Para isso, foram utilizadas quatro espécies padrão: Folsomia candida, Eisenia andrei, Triticum aestivum e Brassica rapa, e simulados diferentes cenários climáticos, com vários parâmetros letais e subletais analisados. A exposição combinada foi analisada utilizando, quando possível, a ferramenta MIXTOX, com base no modelo de referência de acção independente (IA) e possíveis desvios, assim como rácios sinergísticos/antagonísticos (a partir de valores de EC50/LC50), quando a dose-resposta de um dos stressores não foi obtida. Todos os fatores de stress aplicados isoladamente causaram efeitos significativos sobre as espécies testadas e sua exposição combinada com carbaril, apresentaram respostas diferenciadas: para as minhocas, a seca e temperaturas elevadas aumentaram os efeitos deletérios do carbaril (sinergismo), enquanto o alagamento e temperaturas baixas diminuíram sua toxicidade (antagonismo). Para os colêmbolos, o modelo IA mostrou ser uma boa ferramenta para prever a toxicidade do carbaril tanto para temperaturas altas como para as baixas. Para as duas espécies de plantas foram encontradas diferenças significativas entre elas: em termos gerais, as interações entre carbaril e os stressores naturais foram observadas, com sinergismo aparecendo como o padrão principal relacionado com a radiação UV, solos secos e temperaturas elevadas, enquanto o padrão principal relacionado com temperaturas baixas e stress de alagamento foi o antagonismo. Quando os efeitos de dois stressores naturais (radiação UV e humidade do solo) em plantas foram avaliados, uma interação significativa foi encontrada: a seca aliviou o efeito deletério da radiação UV em T. aestivum e o alagamento aumentou os seus efeitos, mas para B. rapa a adição de ambos os stresses de água causou um aumento (sinergismo) dos efeitos deletérios da radiação UV para todos os parâmetros avaliados. Portanto é necessário que as diferenças sazonais e latitudinais, bem como as mudanças climáticas globais, sejam integradas na avaliação de risco de contaminantes do solo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid oxide fuel (SOFCs) and electrolyzer (SOECs) cells have been promoted as promising technologies for the stabilization of fuel supply and usage in future green energy systems. SOFCs are devices that produce electricity by the oxidation of hydrogen or hydrocarbon fuels with high efficiency. Conversely, SOECs can offer the reverse reaction, where synthetic fuels can be generated by the input of renewable electricity. Due to this similar but inverse nature of SOFCs and SOECs, these devices have traditionally been constructed from comparable materials. Nonetheless, several limitations have hindered the entry of SOFCs and SOECs into the marketplace. One of the most debilitating is associated with chemical interreactions between cell components that can lead to poor longevities at high working temperatures and/or depleted electrochemcial performance. Normally such interreactions are countered by the introduction of thin, purely ionic conducting, buffer layers between the electrode and electrolyte interface. The objective of this thesis is to assess if possible improvements in electrode kinetics can also be obtained by modifying the transport properties of these buffer layers by the introduction of multivalent cations. The introduction of minor electronic conductivity in the surface of the electrolyte material has previously been shown to radically enhance the electrochemically active area for oxygen exchange, reducing polarization resistance losses. Hence, the current thesis aims to extend this knowledge to tailor a bi-functional buffer layer that can prevent chemical interreaction while also enhancing electrode kinetics.The thesis selects a typical scenario of an yttria stabilized zirconia electrolyte combined with a lanthanide containing oxygen electrode. Gadolinium, terbium and praseodymium doped cerium oxide materials have been investigated as potential buffer layers. The mixed ionic electronic conducting (MIEC) properties of the doped-cerium materials have been analyzed and collated. A detailed analysis is further presented of the impact of the buffer layers on the kinetics of the oxygen electrode in SOFC and SOEC devices. Special focus is made to assess for potential links between the transport properties of the buffer layer and subsequent electrode performance. The work also evaluates the electrochemical performance of different K2NiF4 structure cathodes deposited onto a peak performing Pr doped-cerium buffer layer, the influence of buffer layer thickness and the Pr content of the ceria buffer layer. It is shown that dramatic increases in electrode performance can be obtained by the introduction of MIEC buffer layers, where the best performances are shown to be offered by buffer layers of highest ambipolar conductivity. These buffer layers are also shown to continue to offer the bifunctional role to protect from unwanted chemical interactions at the electrode/electrolyte interface.