Electromechanical properties of engineered lead free potassium sodium niobate based materials
Contribuinte(s) |
Costa, Maria Elisabete Jorge Vieira da |
---|---|
Data(s) |
03/06/2015
03/06/2015
2014
|
Resumo |
K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials for an intended application. Hence, polycrystalline KNN ceramics (undoped, non-stoichiometric; NST and doped), high-quality KNN single crystals and textured KNN based ceramics were successfully synthesized and characterized in this work. Polycrystalline undoped, non-stoichiometric (NST) and Mn doped KNN ceramics were prepared by conventional ceramic processing. Structure, microstructure and electrical properties were measured. It was observed that the window for mono-phasic compositions was very narrow for both NST ceramics and Mn doped ceramics. For NST ceramics the variation of A/B ratio influenced the polarization (P-E) hysteresis loop and better piezoelectric and dielectric responses could be found for small stoichiometry deviations (A/B = 0.97). Regarding Mn doping, as compared to undoped KNN which showed leaky polarization (P-E) hysteresis loops, B-site Mn doped ceramics showed a well saturated, less-leaky hysteresis loop and a significant properties improvement. Impedance spectroscopy was used to assess the role of Mn and a relation between charge transport – defects and ferroelectric response in K0.5Na0.5NbO3 (KNN) and Mn doped KNN ceramics could be established. At room temperature the conduction in KNN which is associated with holes transport is suppressed by Mn doping. Hence Mn addition increases the resistivity of the ceramic, which proved to be very helpful for improving the saturation of the P-E loop. At high temperatures the conduction is dominated by the motion of ionized oxygen vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 μC/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that <001> - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. Polarized Raman analysis of ferroelectric potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) single crystals was performed. For the first time, an evidence is provided that supports the assignment of KNN single crystals structure to the monoclinic symmetry at room temperature. Intensities of A′, A″ and mixed A′+A″ phonons have been theoretically calculated and compared with the experimental data in dependence of crystal rotation, which allowed the precise determination of the Raman tensor coefficients for (non-leaking) modes in monoclinic KNN. In relation to the previous literature, this study clarifies that assigning monoclinic phase is more suitable than the orthorhombic one. In addition, this study is the basis for non-destructive assessments of domain distribution by Raman spectroscopy in KNN-based lead-free ferroelectrics with complex structures. Searching a deeper understanding of the electrical behaviour of both KNN single crystal and polycrystalline materials for the sake of designing optimized KNN materials, a comparative study at the level of charge transport and point defects was carried out by impedance spectroscopy. KNN single crystals showed lower conductivity than polycrystals from room temperature up to 200 ºC, but above this temperature polycrystalline KNN displays lower conductivity. The low temperature (T < 200 ºC) behaviour reflects the different processing conditions of both ceramics and single crystals, which account for less defects prone to charge transport in the case of single crystals. As temperature increases (T > 200 ºC) single crystals become more conductive than polycrystalline samples, in which grain boundaries act as barriers to charge transport. For even higher temperatures the conductivity difference between both is increased due to the contribution of ionic conduction in single crystals. Indeed the values of activation energy calculated to the high temperature range (T > 300 ºC) were 1.60 and 0.97 eV, confirming the charge transport due to ionic conduction and ionized oxygen vacancies in single crystals and polycrystalline KNN, respectively. It is suggested that single crystals with low defects content and improved electromechanical properties could be a better choice for room temperature applications, though at high temperatures less conductive ceramics may be the choice, depending on the targeted use. Aiming at engineering the properties of KNN polycrystals towards the performance of single crystals, the preparation and properties study of (001) – oriented (K0.5Na0.5)0.98Li0.02NbO3 (KNNL) ceramics obtained by templated grain growth (TGG) using KNN single crystals as templates was undertaken. The choice of KNN single crystals templates is related with their better properties and to their unique domain structure which were envisaged as a tool for templating better properties in KNN ceramics too. X-ray diffraction analysis revealed for the templated ceramics a monoclinic structure at room temperature and a Lotgering factor (f) of 40% which confirmed texture development. These textured ceramics exhibit a long range ordered domain pattern consisting of 90º and 180º domains, similar to the one observed in the single crystals. Enhanced dielectric (13017 at TC), ferroelectric (2Pr = 42.8 μC/cm2) and piezoelectric (d33 = 280 pC/N) properties are observed for textured KNNL ceramics as compared to the randomly oriented ones. This behaviour is suggested to be due to the long range ordered domain patterns observed in the textured ceramics. The obtained results as compared with the data previously reported on texture KNN based ceramics confirm that superior properties were found due to ordered repeated domain pattern. This study provides an useful approach towards properties improvement of KNN-based piezoelectric ceramics. Overall, the present results bring a significant contribution to the pool of knowledge on the properties of sodium potassium niobate materials: a relation between the domain patterns and di-, ferro-, and piezo-electric response of single crystals and ceramics was demonstrated and ways of engineering maximised properties in KNN materials, for example by texturing were established. This contribution is envisaged to have broad implications for the expanded use of KNN over the alternative lead-based materials. O niobato de sódio e de potássio, K0.5Na0.5NbO3 (KNN), é o material isento de chumbo mais promissor para substituir o titanato zirconato de chumbo (PZT), que ainda é o líder de mercado utilizado para sensores e actuadores. Para tornar o KNN verdadeiramente competitivo, é necessário compreender e melhorar as suas propriedades. Esse objectivo é perseguido no presente trabalho através de diferentes abordagens, visando o estudo das propriedades intrínsecas do KNN e a subsequente identificação de estratégias apropriadas, como por exemplo a dopagem e a texturização, para desenhar melhores materiais à base de KNN para as aplicações pretendidas. Assim, no presente trabalho, fabricaram-se e caracterizaram-se cerâmicos de KNN dopado e não dopado, de KNN não estequiométrico e de KNN texturizado. Adicionalmente cresceram-se e caracterizaram-se cristais simples de KNN de elevada qualidade. Os cerâmicos de KNN (não dopado, dopado com Mn e não-estequiométrico (NST)) foram preparados pelo método convencional de mistura de óxidos, tendo-se subsequentemente medido as suas propriedades eléctricas e analisadas as respectivas estruturas e microestruturas. No caso dos cerâmicos dopados com Mn bem como no dos cerâmicos NST verificou-se existir uma estreita janela de composição monofásica associada à dopagem e não estequiometria na posição-A. Nos cerâmicos NST a variação da razão (A/B) influencia o ciclo de histerese da polarização ferroeléctrica (P-E), verificandose a obtenção de respostas dieléctricas e piezoeléctricas melhoradas para pequenos desvios da estequiometria (A/B = 0.97). No que se refere ao KNN dopado com Mn, quando comparado com o KNN não dopado cujos ciclos de histerese são não saturados, verificou-se que a dopagem no lugar B conduz a uma curva (P-E) mais saturada e a uma melhoria significativa de propriedades. Usou-se a espectroscopia de impedância para esclarecer o papel do Mn, tendo-se estabelecido uma correlação entre defeitos/transporte de carga e a resposta ferroeléctrica do K0.5Na0.5NbO3 (KNN) e do KNN dopado com Mn. À temperatura ambiente a condução eléctrica no KNN, associada ao transporte por buracos, é minimizada pela dopagem com Mn. A adição de Mn incrementa assim a resistividade do cerâmico, o que permite melhorar a saturação do ciclo (P-E). A temperaturas elevadas a condução passa a ser dominada pela movimento de lacunas de oxigénio ionizadas cuja concentração aumenta com a dopagem com Mn. Preparam-se também cristais simples de KNN recorrendo-se a um método de fluxo de alta temperatura. Usou-se um fluxo modificado com adição de B2O3 para crescer cristais a uma temperatura relativamente baixa. Caracterizou-se a qualidade química e cristalográfica dos cristais por análise de DRX, EDS e ICP. Os cristais obtidos exibiram propriedades com valores elevados, designadamente uma permitividade dieléctrica de 29,100 à temperatura de transição da fase tetragonal para fase cúbica, uma polarização remanescente 19,4 μC/cm2 e um coeficiente piezoeléctrico de 160 pC/N, valores estes superiores aos dos cerâmicos convencionais de KNN. Usou-se pela primeira vez a microscopia de força piezoeléctrica para caracterizar a estrutura de domínios dos monocristais de KNN. Foi possível observar que os cristais simples de KNN orientados segundo <001>, evidenciaram um padrão de estrutura de domínios, com domínios de 180º dispostos paralelamente e domínios de 90º dispostos em zig-zag. Com base na comparação entre cristais e cerâmicos de KNN é possível sustentar-se que a presença nos cristais simples de um tal padrão de domínios ordenados com longo alcance, ausente nos cerâmicos, é responsável pelas propriedades melhoradas dos cristais simples de KNN. Espera-se que os presentes resultados, ao estabelecerem uma relação entre o padrão de estrutura de domínios, uma espécie de impressão digital, e a resposta dielétrica e ferroelétrica dos cristais simples e ao indicarem vias para se atingirem propriedades maximizadas em materiais de KNN, venham a ter fortes implicações na expansão do uso dos materiais de KNN. Caracterizaram-se também os monocristais ferroeléctricos de KNN por espectroscopia de Raman, obtendo-se pela primeira vez evidências que permitem a atribuir a estrutura cristalina de simetria monoclínica ao KNN. As intensidades dos fonões A′ , A" e A' + A" foram calculadas teoricamente e comparadas com os dados experimentais em função da rotação de cristal, o que permitiu a determinação precisa dos coeficientes do tensor Raman para modos (non-leaking) em KNN monoclínico. No contexto da literatura este estudo confirma que a atribuição da simetria monoclínica é mais adequada do que a ortorrômbica. Este estudo constitui ainda uma base para a avaliação não-destrutiva da distribuição de domínios por espectroscopia Raman em materiais ferroelétricos isentos de chumbo, à base de KNN e com estruturas complexas. Procurando aprofundar a compreensão do comportamento eléctrico dos cristais simples e dos cerâmicos de KNN, com o objectivo de desenhar materiais com propriedades optimizadas, realizou-se um estudo comparativo ao nível de defeitos e transporte de carga, usando-se para tal a espectroscopia de impedância. Os monocristais apresentam menor condutividade do que os materiais policristalinos homólogos para temperaturas até 200 ºC ao passo que, acima desta temperatura, são os materiais policristalinos quem apresenta menor condutividade. O comportamento de baixa temperatura (T < 200 ºC) reflecte as diferentes condições de processamento dos cerâmicos e dos cristais, que são responsáveis pelo menor teor de defeitos transportadores de carga no caso dos cristais simples. À medida que a temperatura aumenta, (T > 200 ºC) os monocristais tornam-se agora mais condutores do que as amostras policristalinas nas quais as fronteiras de grão actuam como barreiras ao transporte de carga eléctrica. Para temperaturas ainda mais elevadas a diferença de condutividade entre cristais e cerâmicos é incrementada devido à contribuição da condução iónica nos cristais. Efectivamente, para a gama de temperatura elevada (T > 300 ºC),calcularam-se valores da energia de activação de 1,60 e 0,97 eV que confirmam um transporte de carga associado a condução iónica e a lacunas de oxigénio ionizadas, em cristais simples e em cerâmicos, respectivamente. Sugere-se assim que, dependendo da aplicação em em vista, os cristais, com baixo teor de defeitos e propriedades electromecânicas melhoradas serão uma escolha indicada para aplicações a temperaturas próximas da temperatura ambiente ao passo que, para altas temperaturas, os cerâmicos, menos condutores, serão a opção mais indicada. Com o objectivo de desenhar as propriedades dos materiais policristalinos de KNN na mira de um desempenho semelhante ao dos cristais simples, prepararam-se e estudaram-se as propriedades de cerâmicos de (K0.5Na0.5)0.98Li0.02NbO3 (KNNL) com orientação (00l), usando cristais simples de KNN como partículas modelo para produzir cerâmicos texturizados por crescimento de grão modelado ( do inglês “template grain growth”). A escolha dos cristais simples como partículas modelo baseou-se no facto destas possuírem boas propriedades, aqui usadas como ferramenta indutora de melhores propriedades nos cerâmicos de KNN. A análise DRX revelou que os cerâmicos preparados com partículas modelo evidenciavam uma estrutura monoclínica à temperatura ambiente e um fator de Lotgering (f) de 40 %, o que confirma o desenvolvimento de textura cristalográfica. Estes cerâmicos texturizados apresentam um padrão de domínios ordenado com longo alcance que consiste em domínios de 90º e de 180º, semelhante ao observado nos cristais simples. Observaram-se valores elevados de constante dieléctrica (13017 na transição de fase C/T), de polarização ferroelétrica (2Pr = 42,8 μC/cm2) e de coeficiente piezoelétrico (d33 = 280 pC/N ) nos cerâmicos KNNL texturizados, quando comparados com os cerâmicos não orientados. Sugerese que esta resposta eléctrica se deve ao padrão de domínioordenados, observado nas amostras texturizadas. Os resultados obtidos, quando comparados com dados anteriormente reportados para cerâmicos de KNN texturizados confirmam a superioridade das propriedades obtidas, que se atribui à estrutura de domíneos observada. Este estudo fornece uma abordagem que pode ser de grande utilidade para a melhoria das propriedades dos cerâmicos piezoelétricos à base de KNN. Globalmente considerados, os presentes resultados configuram um importante contributo para o conjunto dos conhecimentos sobre as propriedades do niobato de sódio e de potássio: demonstrou-se que existe uma relação entre o padrão de estrutura de domínios e a resposta dieléctrica, ferroeléctrica e piezoeléctrica de cristais simples e de cerâmicos de KNN e apontou-se uma via para a melhoria das propriedades dos cerâmicos através da texturização. Prevê-se assim que este contributo tenha um impacto significativo na viabilização do uso generalizado do KNN em detrimento dos materiais à base de chumbo. Doutoramento em Ciência e Engenharia de Materiais |
Identificador |
http://hdl.handle.net/10773/14182 101422210 |
Idioma(s) |
eng |
Publicador |
Universidade de Aveiro |
Relação |
FCT |
Direitos |
openAccess |
Palavras-Chave | #Ciência dos materiais #Cerâmica electrónica #Policristais #Cerâmica electrónica #Policristais #Niobatos - Propriedades eléctricas #Potassium sodium niobate #K0.5Na0.5NbO3 #KNN #Lead free #Polycrystalline ceramics #Single crystals #Textured ceramics #Dielectric #Piezoelectric #Domains #Electromechanical |
Tipo |
doctoralThesis |