807 resultados para Reverse Engineering
Resumo:
The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis(®)) and collagen foams (TissueFleece(®)). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be implicated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-beta) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-beta superfamily genes analyzed by real-time reverse transcription-polymerase chain reaction, three were found to be significantly different with sixfold up-regulated for TGF-beta2, and 3.8-fold for BMP-6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.
Resumo:
Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.
Resumo:
The chemical functionalization of cell-surface proteins of human primary fetal bone cells with hydrophilic bioorthogonal intermediates was investigated. Toward this goal, chemical pathways were developed for click reaction-mediated coupling of alkyne derivatives with cellular azido-expressing proteins. The incorporation via a tetraethylene glycol linker of a dipeptide and a reporter biotin allowed the proof of concept for the introduction of cell-specific peptide ligands and to follow the reaction in living cells. Tuning the conditions of the click reaction resulted in chemical functionalization of living human fetal osteoblasts with excellent cell survival.
Resumo:
The seven members of the FXYD protein family associate with the Na(+)-K(+) pump and modulate its activity. We investigated whether conserved cysteines in FXYD proteins are susceptible to glutathionylation and whether such reactivity affects Na(+)-K(+) pump function in cardiac myocytes and Xenopus oocytes. Glutathionylation was detected by immunoblotting streptavidin precipitate from biotin-GSH loaded cells or by a GSH antibody. Incubation of myocytes with recombinant FXYD proteins resulted in competitive displacement of native FXYD1. Myocyte and Xenopus oocyte pump currents were measured with whole-cell and two-electrode voltage clamp techniques, respectively. Native FXYD1 in myocytes and FXYD1 expressed in oocytes were susceptible to glutathionylation. Mutagenesis identified the specific cysteine in the cytoplasmic terminal that was reactive. Its reactivity was dependent on flanking basic amino acids. We have reported that Na(+)-K(+) pump β(1) subunit glutathionylation induced by oxidative signals causes pump inhibition in a previous study. In the present study, we found that β(1) subunit glutathionylation and pump inhibition could be reversed by exposing myocytes to exogenous wild-type FXYD3. A cysteine-free FXYD3 derivative had no effect. Similar results were obtained with wild-type and mutant FXYD proteins expressed in oocytes. Glutathionylation of the β(1) subunit was increased in myocardium from FXYD1(-/-) mice. In conclusion, there is a dependence of Na(+)-K(+) pump regulation on reactivity of two specifically identified cysteines on separate components of the multimeric Na(+)-K(+) pump complex. By facilitating deglutathionylation of the β(1) subunit, FXYD proteins reverse oxidative inhibition of the Na(+)-K(+) pump and play a dynamic role in its regulation.
Resumo:
Iowa is a relatively small state and is on the rebound economically. It has an overall population that is stable, but which is shifting within the state from more rural areas to suburban and urban centers. There is a very tight labor market with high levels of employment. Iowa now has a time-sensitive opportunity to exert global leadership in renewable energy, while maintaining its leadership in other key industries like finance and agriculture.
Resumo:
This bulletin is a compilation of the reports on completed research done for the Iowa State Highway Research Board Project HR-1, "The Loess and Glacial Till Materials of Iowa; an Investigation of Their Physical and Chemical Properties and Techniques for Processing Them to Increase Their All-Weather Stability for Road Construction.” The research, started in 1950, was done by the Iowa Engineering Experiment Station under its project 283-S. The project was supported by funds from the Iowa State Highway Commission.
Resumo:
Telomerase is an RNA-dependent DNA polymerase that synthesizes telomeric DNA. Its activity is not detectable in most somatic cells but it is reactivated during tumorigenesis. In most cancers, the combination of hTERT hypermethylation and hypomethylation of a short promoter region is permissive for low-level hTERT transcription. Activated and malignant lymphocytes express high telomerase activity, through a mechanism that seems methylation-independent. The aim of this study was to determine which mechanism is involved in the enhanced expression of hTERT in lymphoid cells. Our data confirm that in B cells, some T cell lymphomas and non-neoplastic lymph nodes, the hTERT promoter is unmethylated. Binding sites for the B cell-specific transcription factor PAX5 were identified downstream of the ATG translational start site through EMSA and ChIP experiments. ChIP assays indicated that the transcriptional activation of hTERT by PAX5 does not involve repression of CTCF binding. In a B cell lymphoma cell line, siRNA-induced knockdown of PAX5 expression repressed hTERT transcription. Moreover, ectopic expression of PAX5 in a telomerase-negative normal fibroblast cell line was found to be sufficient to activate hTERT expression. These data show that activation of hTERT in telomerase-positive B cells is due to a methylation-independent mechanism in which PAX5 plays an important role.
Resumo:
Lappeenrannan teknillisen korkeakoulun sähkötekniikan osasto muutti 1.8.2005 sähkötekniikan tutkinnon kaksiportaiseksi ja vastaamaan näin Bologna-prosessia ja Suomen yliopistolainsäädäntöä. Tutkinnonuudistuksen myötä osasto haluaa varmistaa sähkötekniikan tutkintojen laadun ja vertailtavuuden sekä parantaa opiskelijoidensekä henkilökunnan liikkuvuutta. Tutkintojen laatu ja vertailtavuus osoitetaan sähkötekniikan osaston benchmark-projektilla, jossa kerätään tietoja maisteri- ja tohtorintutkintoa tarjoavista eurooppalaisista yliopistoista. Diplomityö käsittää BM-projektin kolmannen vaiheen suunnittelun ja toteutuksen sisältäen teoriaa benchmark-projekteille tyypillisistä toimintatavoista. Hyväksi havaitut menetelmiä, kuten kyselyt ja matriisit, on tässä työssä otettu soveltuvin osin sähkötekniikan osaston BM-projektin työkaluiksi. Diplomityössä analysoidaan työkalujen avulla BM-kumppaneilta kerättyjä tietoja sekä esitetään ratkaisuja, miten sähkötekniikan osastolla voidaan jatkaa parhaiden toimintatapojen löytämistä.
Resumo:
Tutkielman tavoitteena on määritellä projektikontrolloinnin ja - riskijohtamisen roolit ja toiminnot saksalaisissa kone- ja tehdassuunnitteluteollisuusyrityksissä. Tämä on kvalitatiivinen tutkielma, jossa käytetään voimakkaasti kuvailevia metodeita. Materiaali tutkimuksen empiiriseen osaan kerättiin kyselykaavakkeen avulla. Kyselykaavakkeiden tulokset käsiteltiin Microsoft Office Access- ohjelmalla ja analysoitiin Microsoft Office Excel- ohjelmalla ja Pivot table- työkalun avulla. Tutkimustulokset osoittavat, että asianmukaisessa projektikontrollointi- ja riskijohtamismetodien käytössä ja käyttötiheydessä esiintyy puutteita saksalaisissa kone- ja tehdassuunnitteluteollisuusyrityksissä. Tehostamalla ja keskittymällä enemmän projektikontrollointi- ja riskijohtamismetodeihin ja prosesseihin sekä projektien että yritysten suorituskyky paranisi.
Resumo:
This paper analyzes the possibilities of integrating cost information and engineering design. Special emphasis is put on finding the potential of using the activity-based costing (ABC) method. Today, the problem of cost estimation in engineering design is that there are two separate extremes of knowledge. On the one extreme, the engineers model the technical parametres behindcosts in great detail but do not get appropriate cost information to their elegant models. On the other extreme, the accounting professionals are stuck with traditional cost accounting methods driven by the procedures and cycles of financial accounting. Therefore, in many cases, the cost information needs of various decision making groups, for example design engineers, are not served satisfactorily. This paper studies if the activity-based costing (ABC) method could offer a compromise between the two extremes. Recognizing activities and activity chains as well as activity and cost drivers could be specially beneficial for design engineers. Also, recognizing the accurate and reliable product costs of existing products helps when doing variant design. However, ABC is not at its best if the cost system becomes too complicated. This is why a comprehensive ABC-cost information system with detailed cost information for the use of design engineers should be examined critically. ABC is at its best when considering such issues as which activities drive costs, the cost of product complexity, allocating indirect costs on the products, the relationships between processes and costs, and the cost of excess capacity.