970 resultados para Purification
Resumo:
Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 'apo', CaMKK2 (165-501) in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, "Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2"
Resumo:
The purification of B-phycoerythrin from a concentrated extract of disrupted Porphyridium cruentum cells was carried out using a new vortex flow reactor design for protein purification. The reactor behaved as an expanded bed in the laminar vortices flow regime where the Streamline DEAE resin was expanded by the axial flow and stabilized by the vortex flow. After the broth culture was centrifuged and resuspended in the adsorption buffer, the concentrated extract of disrupted cells was directly loaded into the vortex flow reactor. The purification of B-phycoerythrin was carried out in two steps: adsorption in the expanded bed and elution from the settled bed. 142.0 mg of B-phycoerythrin was eluted representing a total recovery yield of 86.6%. Prior to B-phycoerythrin purification, the protein adsorption of the vortex flow reactor was characterized through hydrodynamic studies and a dynamic capacity measurement using a standard protein.
Resumo:
Most commercially available reverse osmosis (RO) and nanofiltration (NF) membranes are based on the thin film composite (TFC) aromatic polyamide membranes. However, they have several disadvantages including low resistance to fouling, low chemical and thermal stabilities and limited chlorine tolerance. To address these problems, advanced RO/NF membranes are being developed from polyimides for water and wastewater treatments. The following three projects have resulted from my research. (1) Positively charged and solvent resistant NF membranes. The use of solvent resistant membranes to facilitate small molecule separations has been a long standing industry goal of the chemical and pharmaceutical industries. We developed a solvent resistant membrane by chemically cross-linking of polyimide membrane using polyethylenimine. This membrane showed excellent stability in almost all organic solvents. In addition, this membrane was positively charged due to the amine groups remaining on the surface. As a result, high efficiency (> 95%) and selectivity for multivalent heavy metal removal was achieved. (2) Fouling resistant NF membranes. Antifouling membranes are highly desired for “all” applications because fouling will lead to higher energy demand, increase of cleaning and corresponding down time and reduced life-time of the membrane elements. For fouling prevention, we designed a new membrane system using a coating technique to modify membrane surface properties to avoid adsorption of foulants like humic acid. A layer of water-soluble polymer such as polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyvinyl sulfate (PVS) or sulfonated poly(ether ether ketone) (SPEEK), was adsorbed onto the surface of a positively charged membrane. The resultant membranes have a smooth and almost neutrally charged surface which showed better fouling resistance than both the positively charged NF membranes and commercially available negatively charged NTR-7450 membrane. In addition, these membranes showed high efficiency for removal of multivalent ions (> 95% for both cations and anions). Therefore, these antifouling surfaces can be potentially used for water softening, water desalination and wastewater treatment in a membrane bioreactor (MBR) process. (3) Thermally stable RO membranes. Commercial RO membranes cannot be used at temperature higher than 45°C due to the use of polysulfone substrate, which often limits their applications in industries. We successfully developed polyimides as the membrane substrate for thermally stable RO membranes due to their high thermal resistance. The polyimide-based composite polyamide membranes showed desalination performance comparable to the commercial TFC membrane. However, the key advantage of the polyimide-based membrane is its high thermal stability. As the feed temperature increased from 25oC to 95oC, the water flux increased 5 - 6 times while the salt rejection almost kept constant. This membrane appears to provide a unique solution for hot water desalination and also a feasible way to improve the water productivity by increasing the operating temperature without any drop in salt rejection.
Resumo:
Background: The male germline in flowering plants differentiates by asymmetric division of haploid uninucleated microspores, giving rise to a vegetative cell enclosing a smaller generative cell, which eventually undergoes a second mitosis to originate two sperm cells. The vegetative cell and the sperm cells activate distinct genetic and epigenetic mechanisms to control pollen tube growth and germ cell specification, respectively. Therefore, a comprehensive characterization of these processes relies on efficient methods to isolate each of the different cell types throughout male gametogenesis. Results: We developed stable transgenic Arabidopsis lines and reliable purification tools based on Fluorescence-Activated Cell Sorting (FACS) in order to isolate highly pure and viable fractions of each cell/nuclei type before and after pollen mitosis. In the case of mature pollen, this was accomplished by expressing GFP and RFP in the sperm and vegetative nuclei, respectively, resulting in 99% pure sorted populations. Microspores were also purified by FACS taking advantage of their characteristic small size and autofluorescent properties, and were confirmed to be 98% pure. Conclusions: We provide simple and efficient FACS-based purification protocols for Arabidopsis microspores, vegetative nuclei and sperm cells. This paves the way for subsequent molecular analysis such as transcriptomics, DNA methylation analysis and chromatin immunoprecipitation, in the developmental context of microgametogenesis in Arabidopsis.
Resumo:
Theobromine is an alkaloid present in cocoa and it is used in the treatment of atherosclerosis, hypertension, angina, among others. Due to its importance, the aim of this work consists on the development of an efficient and sustainable technology for the extraction of theobromine from cocoa beans. For the development of a purification technique for theobromine extracted from cocoa, aqueous biphasic systems (ABS) composed of ionic liquids (ILs) were initially studied to infer on the most promising systems. Cholinium-based ILs, based on a non-toxic and biocompatible cation, were used combined with two polymers (PPG 400 and PEG 400) and an inorganic salt (K3PO4). The respective phase diagrams at 298 K and atmospheric pressure were determined, as well as their extraction efficiencies for theobromine. The results obtained indicate that K3PO4 has a greater ability to induce the formation of ABS compared to PEG 400 and PPG 400. ABS consisting of K3PO4 also have a high potential for the extraction of theobromine, with extraction efficiencies ranging between 96.4 and 99.9 %. Based on the most promising ILs for the purification step, they were further used in aqueous solution to extract theobromine from cocoa beans, with extraction yields ranging between 4.5% and 6.5 wt%. Finally, ABS were applied to the aqueous solutions containing theobromine from the cocoa extract, with extraction efficiencies ranging between 96.7 and 99.0%.
Resumo:
The immune system is able to produce antibodies, which have the capacity to recognize and to bind to foreign molecules or pathogenic organisms. Currently, there are a diversity of diseases that can be treated with antibodies, like immunoglobulins G (IgG). Thereby, the development of cost-efficient processes for their extraction and purification is an area of main interest in biotechnology. Aqueous biphasic systems (ABS) have been investigated for this purpose, once they allow the reduction of costs and the number of steps involved in the process, when compared with conventional methods. Nevertheless, typical ABS have not showed to be selective, resulting in low purification factors and yields. In this context, the addition of ionic liquids (ILs) as adjuvants can be a viable and potential alternative to tailor the selectivity of these systems. In this work, ABS composed of polyethylene glycol (PEG) of different molecular weight, and a biodegradable salt (potassium citrate) using ILs as adjuvants (5 wt%), were studied for the extraction and purification of IgG from a rabbit source. Initially, it was tested the extraction time, the effect on the molecular weight of PEG in a buffer solution of K3C6H5O7/C6H8O7 at pH≈7, and the effect of pH (59) on the yield (YIgG) and extraction efficiency (EEIgG%) of IgG. The best results regarding EEIgG% were achieved with a centrifugation step at 1000 rpm, during 10 min, in order to promote the separation of phases followed by 120 min of equilibrium. This procedure was then applied to the remaining experiments. The results obtained in the study of PEGs with different molecular weights, revealed a high affinity of IgG for the PEG-rich phase, and particularly for PEGs of lower molecular weight (EEIgG% of 96 % with PEG 400). On the other hand, the variation of pH in the buffer solution did not show a significant effect on the EEIgG%. Finally, it was evaluated the influence of the addition of different ILs (5% wt) on the IgG extraction in ABS composed of PEG 400 at pH≈7. In these studies, it was possible to obtain EEIgG% of 100% with the ILs composed of the anions [TOS]-, [CH3CO2]-and Cl-, although the obtained YIgG% were lower than 40%. On the other hand, the ILs composed of the anions Br-, as well as of the cation [C10mim]+, although not leading to EEIgG% of 100%, provide an increase in the YIgG%. ABS composed of PEG, a biodegradable organic salt and ILs as adjuvants, revealed to be an alternative and promising method to purify IgG. However, additional studies are still required in order to reduce the loss of IgG.
Resumo:
Background: Agro-wastes were used for the production of fibrinolytic enzyme in solid-state fermentation. The process parameters were optimized to enhance the production of fibrinolytic enzyme from Bacillus halodurans IND18 by statistical approach. The fibrinolytic enzyme was purified, and the properties were studied. Results: A two-level full factorial design was used to screen the significant factors. The factors such as moisture, pH, and peptone were significantly affected enzyme production and these three factors were selected for further optimization using central composite design. The optimum medium for fibrinolytic enzyme production was wheat bran medium containing 1% peptone and 80% moisture with pH 8.32. Under these optimized conditions, the production of fibrinolytic enzyme was found to be 6851 U/g. The fibrinolytic enzyme was purified by 3.6-fold with 1275 U/mg specific activity. The molecular mass of fibrinolytic enzyme was determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis, and it was observed as 29 kDa. The fibrinolytic enzyme depicted an optimal pH of 9.0 and was stable at a range of pH from 8.0 to 10.0. The optimal temperature was 60°C and was stable up to 50°C. This enzyme activated plasminogen and also degraded the fibrin net of blood clot, which suggested its potential as an effective thrombolytic agent. Conclusions: Wheat bran was found to be an effective substrate for the production of fibrinolytic enzyme. The purified fibrinolytic enzyme degraded fibrin clot. The fibrinolytic enzyme could be useful to make as an effective thrombolytic agent.