851 resultados para Phase-Shift Cavity
Resumo:
A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We explore the use of the Radon-Wigner transform, which is associated with the fractional Fourier transform of the pupil function, for determining the point spread function (PSF) of an incoherant defocused optical system. Then we introduce these phase-space tools to analyse the wavefront coding imaging system. It is shown that the shape of the PSF for such a system is highly invarient to the defocous-related aberrations except for a lateral shift. The optical transfer function of this system is also investigated briefly from a new understanding of ambiguity function.
Resumo:
In this paper an electrically controllable radial birefringent pupil filter is proposed. It consists of two polarizers and an improved electrically controllable optical azimuth rotator which has two lambda/4 retarders, one electro-optical crystal and one radial birefringent crystal. The evolution and distribution of polarization states of this pupil filter are discussed. The most interesting and useful advantage of such a structure is that the characteristic of transverse superresolution and axial extended focal depth or focal shift can be obtained merely by controlling the applied voltage on the electro-optical crystal. The radial birefringent crystal azimuth angle cooperating with different electrical inductive phase differences will determine the transverse and axial intensity distribution. It is shown that for particular ranges of electrical inductive phase difference it is possible to obtain transverse superresolution along with extended focal depth or with a focal shift.
Resumo:
Superresolution is very important in imaging and optical storage systems, and has attracted much attention. In this article, concentric three-zone phase plate with 0, pi, 0 phase variation has been investigated numerically to show that this kind of phase plate can be used to obtain three-dimensional superresolution. In addition, the number of intensity maximum, focal depth, focal shift, full-width half-maximum, and relative intensity of side lobe are listed for different radii of the phase zones, which paves the way for design of the phase plate. Therefore, one can choose values of radii for desired intensity distribution in focal region, such as for the purpose of radial superresolution with high focal depth in optical storage. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A novel method for modelling the statistics of 2D photographic images useful in image restoration is defined. The new method is based on the Dual Tree Complex Wavelet Transform (DT-CWT) but a phase rotation is applied to the coefficients to create complex coefficients whose phase is shift-invariant at multiscale edge and ridge features. This is in addition to the magnitude shift invariance achieved by the DT-CWT. The increased correlation between coefficients adjacent in space and scale provides an improved mechanism for signal estimation. © 2006 IEEE.
Resumo:
Experimental demonstration of lasing in a broad area twin-contact semiconductor laser which operates as a phase-conjugation (PC) mirror in an external cavity configuration is reported. This allows "self-aligned" and self-pumped spatially nondegenerate four-wave mixing to be achieved without the need for external optical signals. The external cavity laser system is very insensitive to tilt misalignments of the external mirror in the PC regime and exhibits very good mechanical stability. The resonant frequency of the external cavity lies in the GHz range which corresponds to a subnanosecond time response of phase conjugation processes in the semiconductor laser. © 1997 American Institute of Physics.
Resumo:
A simple, sensitive, and accurate method for determination of polybrominated diphenyl ethers (PBDEs) in soil has been developed based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS). Permethylated-beta-cyclodextrin/hydroxyl-termination silicone oil (PM-beta-CD/OH-TSO) fiber was first prepared by sol-gel technology and employed in SPME procedure. By exploiting the superiorities of sot-gel coating technique and the advantages of the high hydrophobic doughnut-shaped cavity of PM-beta-CD, the novel fiber showed desirable operational stability and extraction ability. After optimization on extraction conditions like water addition, extraction temperature, extraction time, salts effect, and solvents addition, the method was validated in soil samples, achieving good linearity (r>0.999), precision (R.S.D. < 10%), accuracy (recovery>78%), and detection limits (S/N =3) raging from 13.0 to 78.3 pg/g. (c) 2007 Published by Elsevier B.V.
Resumo:
In this paper we propose a new algorithm for reconstructing phase-encoded velocity images of catalytic reactors from undersampled NMR acquisitions. Previous work on this application has employed total variation and nonlinear conjugate gradients which, although promising, yields unsatisfactory, unphysical visual results. Our approach leverages prior knowledge about the piecewise-smoothness of the phase map and physical constraints imposed by the system under study. We show how iteratively regularizing the real and imaginary parts of the acquired complex image separately in a shift-invariant wavelet domain works to produce a piecewise-smooth velocity map, in general. Using appropriately defined metrics we demonstrate higher fidelity to the ground truth and physical system constraints than previous methods for this specific application. © 2013 IEEE.
Resumo:
Thick nonpolar (10 (1) over bar0) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (10 (1) over bar(3) over bar) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high. resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (10 (1) over bar0) and (10 (1) over bar(3) over bar) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers. [DOI: 10.1143/JJAP.47.3346]
Resumo:
A method for fabrication of long-wavelength narrow line-width InGaAs resonant cavity enhanced (RCE) photodetectors in a silicon substrate operating at the wavelength range of 1.3-1.6 mu m has been developed. A full width at half maximum (FWHM) of 0.7 nm and a peak responsivity of 0. 16 A/W at the resonance wavelength of 1.55 mu m have been accomplished by using a thick InP layer as part of the resonant cavity. The effects of roughness and tilt of the InP layer surface, and its free carrier absorption, as well as the thickness deviation of the mirror pair on the resonance wavelength shift and the peak quantum efficiency of the RCE photodetectors are analyzed in detail, and approaches for minimizing them toward superior performance are suggested. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Based on the results of the temperature-dependent photoluminescence (PL) measurements, the broad PL emission in the phase-separated GaNP alloys with P compositions of 0.03, 0.07, and 0.15 has investigated. The broad PL peaks at 2.18, 2.12 and 1.83 eV are assigned to be an emission from the optical transitions from several trap levels, possibly the iso-electronic trap levels related to nitrogen. With the increasing P composition (from 0.03 to 0.15), these iso-electronic trap levels are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to the apparent red shift (80-160meV) of the PL peak energy and the trend of the red shift is strengthened. No PL emission peak is observed from the GaN-rich GaNP region, suggesting that the photogenerated carriers in the GaN-rich GaNP region may recombine with each other via non-radiation transitions.
Resumo:
The transverse mode control in oxide confined vertical-cavity surface-emitting lasers is discussed by modeling the dielectric aperture as a uniform waveguide and an extra reflectivity at the oxide layer. The phase of the extra reflectivity and the refractive index step can be adjusted to change the mode threshold gain. We calculate the lateral refractive index step from the mode wavelength difference between aperture and perimeter modes, and compare it with that obtained from the weighted average index. The mode reflectivity in terms of the lateral optical confinement factor at the oxide layer is considered in calculating the threshold gain for transverse modes. The numerical results show that higher transverse modes can be suppressed by adjusting the position of a thin AlAs-oxide layer inside a three-quarter-wave layer in the distributed Bragg reflector. (C) 1998 American Institute of Physics. [S0021-8979(98)04007-9].
Resumo:
It is reported that when a light beam travels through a slab of left-handed medium in the air, the lateral shift of the transmitted beam can be negative as well as positive. The necessary condition for the lateral shift to be positive is given. The validity of the stationary-phase approach is demonstrated by numerical simulations for a Gaussian-shaped beam. A restriction to the slab's thickness is provided that is necessary for the beam to retain its profile in the traveling. It is shown that the lateral shift of the reflected beam is equal to that of the transmitted beam in the symmetric configuration.
Resumo:
A 1.55μm Fabry-Perot (F-P) thermo-optical tunable filter is fabricated. The cavity is made of amorphous silicon (a-Si) layer grown by electron-beam evaporation technique. Due to the excellent thermo-optical property of a-Si, the refractive index of the F-P cavity will be changed by heating; the transmittance resonant peak will therefore shift substantially. The measured tuning range is 12nm, FWHM (full-width-at-half-maximum) of the transmission peak is 9nm, and heating efficiency is 0.1K/mW. The large FWHM is mainly due to the non-ideal coating deposition and mirror undulation. Possible improvements to increase the efficiency of heating are suggested.
Resumo:
An external cavity semiconductor laser interferometer used to measure far distance micro-vibration in real time is proposed. In the interferometer, a single longitudinal mode and excellent coherent characteristic grating external cavity semiconductor laser is constructed and acted as a light source and a phase compensator. Its coherent length exceeds 200 meters. The angle between normal and incidence beam of the far object is allowed to change in definite range during the measurement with this interferometer, and this makes the far distance interference measurement easier and more convenient. Also, it is not required to keep the amplitudes of the first and second harmonic components equal, and then the dynamic range is increased. A feedback control system is used to compensate the phase disturbance between the two interference beams introduced by environmental vibration.