990 resultados para Mid-Atlantic Ridge Rift Valley


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study is an evaluation of the applicability of biogenic barium as a proxy for productivity. For this purpose, 190 surface sediment samples from the South Atlantic Ocean were analysed for their barium and aluminium concentrations. Biogenic barium is estimated by subtracting the calculated terrigenous barium (obtained from the terrigenous Ba/Al ratio and the amount of Al in the sample) from the total Ba content in the sample. Based on the accumulation rates of biogenic barium, export production is estimated using three different algorithms proposed by [Paleoceanography 7 (1992) 163, doi:10.1029/92PA00181; Global Biogeochem. Cycles 9 (1995) 289, doi:10.1029/95GB00021; Geomar. Report 38 (1995) 105]. Primary productivity was calculated from these different export productions and compared with measurements of recent primary productivity in the overlying surface waters. Only the primary productions calculated on the basis of the algorithm of [Paleoceanography 7 (1992) 163, doi:10.1029/92PA00181] yield productivity values comparable to those existing in ocean surface waters. This study further reveals that it is not sufficient to use a constant, generally applicable organic carbon/biogenic barium ratio, as is postulated by [Global Biogeochem. Cycles 9 (1995) 289, doi:10.1029/95GB00021]. This ratio has to be assessed regionally. For the sediments of the Cape Basin in the eastern South Atlantic Ocean, a new algorithm is developed which gives plausible primary productivities for the overlying surface waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paleotemperature estimates calculated by the SIMMAX Modern Analog Technique are presented for two gravity cores from the Rio Grande Rise, one from the Brazil Slope, and one from the Ceara Rise. The estimates are based on comparisons between modern and fossil planktonic foraminiferal assemblages and were carried out on samples from Quaternary sediments. Estimated warm-season temperatures from the Rio Grande Rise (at approx. 30° S) range from around 19°C to 24°C, with some coincidence of warm peaks with interglacial stages. The temperature estimates (also warm-season) from the more tropical Brazil Slope (at approx. 8° S) and Ceara Rise (at approx. 4° N) cores are more stable, remaining between 26°C and 28°C throughout most of their lengths. This fairly stable situation in the tropical western Atlantic is interrupted in oxygen isotope stage 6 by a significant drop of 2-3°C in both of these cores. Temperature estimates from the uppermost samples in all cores compare very well to the modern-day measured values. Affinities of some foraminiferal species for warmer or cooler surface temperatures are identified within the temperature range of the examined samples based on their abundance values. Especially notable among the warmer species are, Globorotalia menardii, Globigerinita glutinata, Globigerinoides ruber, and Globigerinoides sacculifer. Species indicative of cooler surface temperatures include Globorotalia inflata, Globigerina bulloides, Neogloboquadrina pachyderma, and Globigerina falconensis. A cluster analysis was carried out to assist in understanding the degree of variation which occurs in the foraminiferal assemblages, and how temperature differences influence the faunal compositions of the samples. It is demonstrated that fairly similar samples may have unexpectedly different estimated temperatures due to small differences in key species and, conversely, quite different assemblages can result in similar or identical temperature estimates which confirms that other parameters than just temperature affect faunal content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide a compilation of downward fluxes (total mass, POC, PON, BSiO2, CaCO3, PIC and lithogenic/terrigenous fluxes) from over 6000 sediment trap measurements distributed in the Atlantic Ocean, from 30 degree North to 49 degree South, and covering the period 1982-2011. Data from the Mediterranean Sea are also included. Data were compiled from different sources: data repositories (BCO-DMO, PANGAEA), time series sites (BATS, CARIACO), published scientific papers and/or personal communications from PI's. All sources are specifed in the data set. Data from the World Ocean Atlas 2009 were extracted to provide each flux observation with contextual environmental data, such as temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of the tropical ocean to global climate change and the extent of sea ice in the glacial nordic seas belong to the great controversies in paleoclimatology. Our new reconstruction of peak glacial sea surface temperatures (SSTs) in the Atlantic is based on census counts of planktic foraminifera, using the Maximum Similarity Technique Version 28 (SIMMAX-28) modern analog technique with 947 modern analog samples and 119 well-dated sediment cores. Our study compares two slightly different scenarios of the Last Glacial Maximum (LGM), the Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPILOG), and Glacial Atlantic Ocean Mapping (GLAMAP 2000) time slices. The comparison shows that the maximum LGM cooling in the Southern Hemisphere slightly preceeded that in the north. In both time slices sea ice was restricted to the north western margin of the nordic seas during glacial northern summer, while the central and eastern parts were ice-free. During northern glacial winter, sea ice advanced to the south of Iceland and Faeroe. In the central northern North Atlantic an anticyclonic gyre formed between 45° and 60°N, with a cool water mass centered west of Ireland, where glacial cooling reached a maximum of >12°C. In the subtropical ocean gyres the new reconstruction supports the glacial-to-interglacial stability of SST as shown by CLIMAP Project Members (CLIMAP) [1981]. The zonal belt of minimum SST seasonality between 2° and 6°N suggests that the LGM caloric equator occupied the same latitude as today. In contrast to the CLIMAP reconstruction, the glacial cooling of the tropical east Atlantic upwelling belt reached up to 6°-8°C during Northern Hemisphere summer. Differences between these SIMMAX-based and published U37[k]- and Mg/Ca-based equatorial SST records are ascribed to strong SST seasonalities and SST signals that were produced by different planktic species groups during different seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a data set of 738 planktonic foraminiferal species counts from sediment surface samples of the eastern North Atlantic and the South Atlantic between 87°N and 40°S, 35°E and 60°W including published Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) data. These species counts are linked to Levitus's [1982] modern water temperature data for the four caloric seasons, four depth ranges (0, 30, 50, and 75 m), and the combined means of those depth ranges. The relation between planktonic foraminiferal assemblages and sea surface temperature (SST) data is estimated using the newly developed SIMMAX technique, which is an acronym for a modern analog technique (MAT) with a similarity index, based on (1) the scalar product of the normalized faunal percentages and (2) a weighting procedure of the modern analog's SSTs according to the inverse geographical distances of the most similar samples. Compared to the classical CLIMAP transfer technique and conventional MAT techniques, SIMMAX provides a more confident reconstruction of paleo-SSTs (correlation coefficient is 0.994 for the caloric winter and 0.993 for caloric summer). The standard deviation of the residuals is 0.90°C for caloric winter and 0.96°C for caloric summer at 0-m water depth. The SST estimates reach optimum stability (standard deviation of the residuals is 0.88°C) at the average 0- to 75-m water depth. Our extensive database provides SST estimates over a range of -1.4 to 27.2°C for caloric winter and 0.4 to 28.6°C for caloric summer, allowing SST estimates which are especially valuable for the high-latitude Atlantic during glacial times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rates of sedimentation of pelagic sediments in the South Atlantic have been determined using the ionium/thorium methodology. Values of the order of several millimeters per thousand years for sediments were found in the deposits in the valleys of the mid-Atlantic ridge. The equatorial deposits showed higher rates of accumulation than the corresponding deposits at higher latitudes, probably reflecting the added influx of materials to the sea floor from tropical rivers through the equatorial current systems. The deposits in the ridge valleys showed marked changes in sedimentation rates at about 115,000 years ago, at which time the present rates changed from higher to lower values. The ridge sediments were composed primarily of continentally derived materials, and there were no indications of solid phases being derived from the weathering of the ridge itself or from volcanic activity. The equatorial samples have mineral assemblages which are distinctly different from those in deposits at higher latitudes and which probably are indicative of contributions of materials from tropical weathering processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.