818 resultados para MODEL-DRIVEN DEVELOPMENT
Resumo:
The research assessed how best to transition engineering-based automotive firms towards more customer-orientated design and development approaches, whilst identifying the main barriers and concerns facing such a shift. The research investigates the ability of a firm to empower individual engineers with user centred design tools traditionally used by designers, whilst understanding the company-wide needs to facilitate their implementation.
Resumo:
There is widespread agreement that entrepreneurial skills are crucial for young people today, yet there are few studies of high school students engaging in entrepreneurship education that might prepare them for music industry careers. This study has been developed in response to these challenges. It explores a group of high school students (15 – 17 years) who alongside their teacher, have co-designed, developed and driven a new business venture, Youth Music Industries (YMI) since 2010. This venture staged cycles of differently scaled events featuring young artists for a young audience. The project was designed to give students a real business situation for developing their project management skills and a broader understanding of working in the music industry. Informed by concepts of social capital and communities of practice, the study examines the process of learning with and through others. This high-stakes environment increased their sense of presence and participation and made it possible for these young people to distribute expertise and learn from each other in a reciprocal and more democratic way. The ongoing success of this organisation can be attributed to the entrepreneurial competencies students developed. The resulting model and design principles talk to an ongoing challenge that has been identified in music education, and creative industries more generally. These principles offer a way forward for other music and creative industries educators or researchers interested in developing models of, and designs for, nurturing an entrepreneurial mindset.
Resumo:
In this work we discuss the development of a mathematical model to predict the shift in gas composition observed over time from a producing CSG (coal seam gas) well, and investigate the effect that physical properties of the coal seam have on gas production. A detailed (local) one-dimensional, two-scale mathematical model of a coal seam has been developed. The model describes the competitive adsorption and desorption of three gas species (CH4, CO2 and N2) within a microscopic, porous coal matrix structure. The (diffusive) flux of these gases between the coal matrices (microscale) and a cleat network (macroscale) is accounted for in the model. The cleat network is modelled as a one-dimensional, volume averaged, porous domain that extends radially from a central well. Diffusive and advective transport of the gases occurs within the cleat network, which also contains liquid water that can be advectively transported. The water and gas phases are assumed to be immiscible. The driving force for the advection in the gas and liquid phases is taken to be a pressure gradient with capillarity also accounted for. In addition, the relative permeabilities of the water and gas phases are considered as functions of the degree of water saturation.
Resumo:
Objective Spondyloarthritides (SpA) occur in 1% of the population and include ankylosing spondylitis (AS) and arthropathy of inflammatory bowel disease (IBD), with characteristic spondylitis, arthritis, enthesitis, and IBD. Genetic studies implicate interleukin-23 (IL-23) receptor signaling in the development of SpA and IBD, and IL-23 overexpression in mice is sufficient for enthesitis, driven by entheseal-resident T cells. However, in genetically prone individuals, it is not clear where IL-23 is produced and how it drives the SpA syndrome, including IBD or subclinical gut inflammation of AS. Moreover, it is unclear why specific tissue involvement varies between patients with SpA. We undertook this study to determine the location of IL-23 production and its role in SpA pathogenesis in BALB/c ZAP-70W163C-mutant (SKG) mice injected intraperitoneally with β-1,3-glucan (curdlan). Methods Eight weeks after curdlan injection in wild-type or IL-17A-/- SKG or BALB/c mice, pathology was scored in tissue sections. Mice were treated with anti-IL-23 or anti-IL-22. Cytokine production and endoplasmic reticulum (ER) stress were determined in affected organs. Results In curdlan-treated SKG mice, arthritis, enthesitis, and ileitis were IL-23 dependent. Enthesitis was specifically dependent on IL-17A and IL-22. IL-23 was induced in the ileum, where it amplified ER stress, goblet cell dysfunction, and proinflammatory cytokine production. IL-17A was pathogenic, while IL-22 was protective against ileitis. IL-22+CD3- innate-like cells were increased in lamina propria mononuclear cells of ileitis-resistant BALB/c mice, which developed ileitis after curdlan injection and anti-IL-22. Conclusion In response to systemic β-1,3-glucan, intestinal IL-23 provokes local mucosal dysregulation and cytokines driving the SpA syndrome, including IL-17/IL-22-dependent enthesitis. Innate IL-22 production promotes ileal tolerance.
Resumo:
If the land sector is to make significant contributions to mitigating anthropogenic greenhouse gas (GHG) emissions in coming decades, it must do so while concurrently expanding production of food and fiber. In our view, mathematical modeling will be required to provide scientific guidance to meet this challenge. In order to be useful in GHG mitigation policy measures, models must simultaneously meet scientific, software engineering, and human capacity requirements. They can be used to understand GHG fluxes, to evaluate proposed GHG mitigation actions, and to predict and monitor the effects of specific actions; the latter applications require a change in mindset that has parallels with the shift from research modeling to decision support. We compare and contrast 6 agro-ecosystem models (FullCAM, DayCent, DNDC, APSIM, WNMM, and AgMod), chosen because they are used in Australian agriculture and forestry. Underlying structural similarities in the representations of carbon flows though plants and soils in these models are complemented by a diverse range of emphases and approaches to the subprocesses within the agro-ecosystem. None of these agro-ecosystem models handles all land sector GHG fluxes, and considerable model-based uncertainty exists for soil C fluxes and enteric methane emissions. The models also show diverse approaches to the initialisation of model simulations, software implementation, distribution, licensing, and software quality assurance; each of these will differentially affect their usefulness for policy-driven GHG mitigation prediction and monitoring. Specific requirements imposed on the use of models by Australian mitigation policy settings are discussed, and areas for further scientific development of agro-ecosystem models for use in GHG mitigation policy are proposed.
Resumo:
Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.
Resumo:
This dissertation proposed a novel experimental model combining a defect configuration with an active instrumented fixation device to investigate the influence of mechanics on bone healing. The proposed defect configuration aimed to minimise physiological loading within an experimental fracture gap and the instrumented fixator was used for the application of controlled displacements and in vivo stiffness monitoring of the healing process. This thesis has provided a novel approach to advance current knowledge and understanding of mechanobiology, which has been limited in previous experimental models.
Resumo:
The utility of near infrared spectroscopy as a non-invasive technique for the assessment of internal eating quality parameters of mandarin fruit (Citrus reticulata cv. Imperial) was assessed. The calibration procedure for the attributes of TSS (total soluble solids) and DM (dry matter) was optimised with respect to a reference sampling technique, scan averaging, spectral window, data pre-treatment (in terms of derivative treatment and scatter correction routine) and regression procedure. The recommended procedure involved sampling of an equatorial position on the fruit with 1 scan per spectrum, and modified partial least squares model development on a 720–950-nm window, pre-treated as first derivative absorbance data (gap size of 4 data points) with standard normal variance and detrend scatter correction. Calibration model performance for the attributes of TSS and DM content was encouraging (typical Rc2 of >0.75 and 0.90, respectively; typical root mean squared standard error of calibration of <0.4 and 0.6%, respectively), whereas that for juiciness and total acidity was unacceptable. The robustness of the TSS and DM calibrations across new populations of fruit is documented in a companion study.
Resumo:
The development of innovative methods of stock assessment is a priority for State and Commonwealth fisheries agencies. It is driven by the need to facilitate sustainable exploitation of naturally occurring fisheries resources for the current and future economic, social and environmental well being of Australia. This project was initiated in this context and took advantage of considerable recent achievements in genomics that are shaping our comprehension of the DNA of humans and animals. The basic idea behind this project was that genetic estimates of effective population size, which can be made from empirical measurements of genetic drift, were equivalent to estimates of the successful number of spawners that is an important parameter in process of fisheries stock assessment. The broad objectives of this study were to 1. Critically evaluate a variety of mathematical methods of calculating effective spawner numbers (Ne) by a. conducting comprehensive computer simulations, and by b. analysis of empirical data collected from the Moreton Bay population of tiger prawns (P. esculentus). 2. Lay the groundwork for the application of the technology in the northern prawn fishery (NPF). 3. Produce software for the calculation of Ne, and to make it widely available. The project pulled together a range of mathematical models for estimating current effective population size from diverse sources. Some of them had been recently implemented with the latest statistical methods (eg. Bayesian framework Berthier, Beaumont et al. 2002), while others had lower profiles (eg. Pudovkin, Zaykin et al. 1996; Rousset and Raymond 1995). Computer code and later software with a user-friendly interface (NeEstimator) was produced to implement the methods. This was used as a basis for simulation experiments to evaluate the performance of the methods with an individual-based model of a prawn population. Following the guidelines suggested by computer simulations, the tiger prawn population in Moreton Bay (south-east Queensland) was sampled for genetic analysis with eight microsatellite loci in three successive spring spawning seasons in 2001, 2002 and 2003. As predicted by the simulations, the estimates had non-infinite upper confidence limits, which is a major achievement for the application of the method to a naturally-occurring, short generation, highly fecund invertebrate species. The genetic estimate of the number of successful spawners was around 1000 individuals in two consecutive years. This contrasts with about 500,000 prawns participating in spawning. It is not possible to distinguish successful from non-successful spawners so we suggest a high level of protection for the entire spawning population. We interpret the difference in numbers between successful and non-successful spawners as a large variation in the number of offspring per family that survive – a large number of families have no surviving offspring, while a few have a large number. We explored various ways in which Ne can be useful in fisheries management. It can be a surrogate for spawning population size, assuming the ratio between Ne and spawning population size has been previously calculated for that species. Alternatively, it can be a surrogate for recruitment, again assuming that the ratio between Ne and recruitment has been previously determined. The number of species that can be analysed in this way, however, is likely to be small because of species-specific life history requirements that need to be satisfied for accuracy. The most universal approach would be to integrate Ne with spawning stock-recruitment models, so that these models are more accurate when applied to fisheries populations. A pathway to achieve this was established in this project, which we predict will significantly improve fisheries sustainability in the future. Regardless of the success of integrating Ne into spawning stock-recruitment models, Ne could be used as a fisheries monitoring tool. Declines in spawning stock size or increases in natural or harvest mortality would be reflected by a decline in Ne. This would be good for data-poor fisheries and provides fishery independent information, however, we suggest a species-by-species approach. Some species may be too numerous or experiencing too much migration for the method to work. During the project two important theoretical studies of the simultaneous estimation of effective population size and migration were published (Vitalis and Couvet 2001b; Wang and Whitlock 2003). These methods, combined with collection of preliminary genetic data from the tiger prawn population in southern Gulf of Carpentaria population and a computer simulation study that evaluated the effect of differing reproductive strategies on genetic estimates, suggest that this technology could make an important contribution to the stock assessment process in the northern prawn fishery (NPF). Advances in the genomics world are rapid and already a cheaper, more reliable substitute for microsatellite loci in this technology is available. Digital data from single nucleotide polymorphisms (SNPs) are likely to super cede ‘analogue’ microsatellite data, making it cheaper and easier to apply the method to species with large population sizes.
Resumo:
Near infrared spectroscopy (NIRS) can be used for the on-line, non-invasive assessment of fruit for eating quality attributes such as total soluble solids (TSS). The robustness of multivariate calibration models, based on NIRS in a partial transmittance optical geometry, for the assessment of TSS of intact rockmelons (Cucumis melo) was assessed. The mesocarp TSS was highest around the fruit equator and increased towards the seed cavity. Inner mesocarp TSS levels decreased towards both the proximal and distal ends of the fruit, but more so towards the proximal end. The equatorial region of the fruit was chosen as representative of the fruit for near infrared assessment of TSS. The spectral window for model development was optimised at 695-1045 nm, and the data pre-treatment procedure was optimised to second-derivative absorbance without scatter correction. The 'global' modified partial least squares (MPLS) regression modelling procedure of WINISI (ver. 1.04) was found to be superior with respect to root mean squared error of prediction (RMSEP) and bias for model predictions of TSS across seasons, compared with the 'local' MPLS regression procedure. Updating of the model with samples selected randomly from the independent validation population demonstrated improvement in both RMSEP and bias with addition of approximately 15 samples.
Resumo:
This paper describes the development of a model, based on Bayesian networks, to estimate the likelihood that sheep flocks are infested with lice at shearing and to assist farm managers or advisers to assess whether or not to apply a lousicide treatment. The risk of lice comes from three main sources: (i) lice may have been present at the previous shearing and not eradicated; (ii) lice may have been introduced with purchased sheep; and (iii) lice may have entered with strays. A Bayesian network is used to assess the probability of each of these events independently and combine them for an overall assessment. Rubbing is a common indicator of lice but there are other causes too. If rubbing has been observed, an additional Bayesian network is used to assess the probability that lice are the cause. The presence or absence of rubbing and its possible cause are combined with these networks to improve the overall risk assessment.
Resumo:
This project involves validating and upgrading the PigBal model to improve the accuracy of manure production predictions from intensive piggery operations.
Resumo:
The proposed project involves validate and upgrading the PigBal model to improve the accuracy of manure and GHG production predictions.
Resumo:
Towards the Development of a Functional-Structural model for Macadamia.